Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HK2 Toán 12 năm 2018 - 2019 trường THPT Lê Quý Đôn - Hà Nội

giới thiệu đến quý thầy, cô giáo cùng các em học sinh khối lớp 12 đề thi HK2 Toán 12 năm học 2018 – 2019 trường THPT Lê Quý Đôn – Đống Đa – Hà Nội, kỳ thi nhằm kiểm tra chất lượng học tập môn Toán của học sinh khối 12 trong giai đoạn học kỳ vừa qua. Đề thi HK2 Toán 12 năm 2018 – 2019 trường THPT Lê Quý Đôn – Hà Nội có mã đề 135, đề được biên soạn theo dạng đề trắc nghiệm kết hợp với tự luận, phần trắc nghiệm gồm 40 câu, phần tự luận gồm 2 câu, học sinh làm bài thi học kỳ 2 Toán 12 trong khoảng thời gian 90 phút. [ads] Trích dẫn đề thi HK2 Toán 12 năm 2018 – 2019 trường THPT Lê Quý Đôn – Hà Nội : + Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(3;7;1), B(8;3;8) và C(3;3;0). Gọi (S1) là mặt cầu tâm A bán kính bằng 3 và (S2) là mặt cầu tâm B bán kính bằng 6. Hỏi có tất cả bao nhiêu mặt phẳng đi qua C và tiếp xúc đồng thời với cả hai mặt cầu (S1), (S2). + Cho hai đường thẳng d1: x = 1 + 2t, y = 2 + 3t, z = 3 + 4t và d2: x = 3 + 4t’, y = 5 + 6t’, z = 7 + 8t’. Trong các mệnh đề sau, mệnh đề nào đúng? A. Đường thẳng d1 vuông góc đường thẳng d2. B. Đường thẳng d1 song song đường thẳng d2. C. Đường thẳng d1 trùng đường thẳng d2. D. Đường thẳng d1, d2 chéo nhau. + Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x + y – 4z + 1 = 0, đường thẳng d: (x – 1)/2 = (y + 1)/-1 = (z – 3)/1 và điểm A(1;3;1) thuộc mặt phẳng (P). Gọi Δ là đường thẳng đi qua A, nằm trong mặt phẳng (P) và cách đường thẳng d một khoảng cách lớn nhất. Gọi véc tơ u = (a;b;1) là một véc tơ chỉ phương của đường thẳng Δ. Tính P = a + 2b.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 2 Toán 12 năm 2019 - 2020 trường Nguyễn Tất Thành - Hà Nội
Ngày … tháng 05 năm 2020, trường THCS & THPT Nguyễn Tất Thành, đặt trong trường Đại học Sư Phạm Hà Nội đã tổ chức kỳ thi kiểm tra học kì 2 môn Toán lớp 12 năm học 2019 – 2020. Đề thi học kì 2 Toán 12 năm 2019 – 2020 trường Nguyễn Tất Thành – Hà Nội mã đề 001, đề gồm có 05 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, nội dung đề bao quát toàn bộ chương trình Toán 12. Trích dẫn đề thi học kì 2 Toán 12 năm 2019 – 2020 trường Nguyễn Tất Thành – Hà Nội : + Cho hàm số y = f(x) liên tục trên R. Khẳng nào sau đây đúng? A. Nếu hàm số có giá trị cực đại là f(x0) với x0 thuộc R thì f(x0) = max f(x) với mọi x thuộc R. B. Nếu hàm số có giá trị cực tiểu là f(x0) với x0 thuộc R thì tồn tại x1 thuộc R sao cho f(x0) < f(x1). C. Nếu hàm số có giá trị cực đại là f(x0) với x0 thuộc R thì f(x0) = min f(x) với mọi x thuộc R. D. Nếu hàm số có giá trị cực tiểu là f(x0) với x0 thuộc R và có giá trị cực đại là f(x1) với x1 thuộc R thì f(x0) < f(x1). [ads] + Cho hàm số f(x) có đạo hàm liên tục trên R và thỏa mãn f(x) > 0, ∀x ∈ R. Cho biết f(0) = 1 và f'(x)/f(x) = 2 – 2x. Tất cả các giá trị thực của tham số m để phương trình f(x) = m có hai nghiệm thực phân biệt là? + Tập hợp các điểm biểu diễn số phức z thỏa mãn |z – i| = |2 – 3i – z| là? A. Đường tròn có phương trình x2 + y2 = 4. B. Đường thẳng có phương trình x + 2y + 1 = 0. C. Đường thẳng có phương trình x – 2y − 3 = 0. D. Đường elip có phương trình x2 + 4y2 = 4.
Đề thi học kì 2 Toán 12 năm 2019 - 2020 trường THPT Tân Túc - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học kì 2 Toán 12 năm học 2019 – 2020 trường THPT Tân Túc, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết.
Đề thi học kì 2 Toán 12 năm 2019 - 2020 trường THPT Thăng Long - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học kì 2 Toán 12 năm học 2019 – 2020 trường THPT Thăng Long, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết.
Đề thi học kì 2 Toán 12 năm 2019 - 2020 trường Trần Cao Vân - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học kì 2 Toán 12 năm học 2019 – 2020 trường THCS – THPT Trần Cao Vân, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết.