Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

135 câu vận dụng cao hàm số lượng giác và phương trình lượng giác ôn thi THPT môn Toán

Tài liệu gồm 13 trang, được sưu tầm và tổng hợp bởi Tư Duy Mở Trắc Nghiệm Toán Lý, tuyển chọn 135 câu vận dụng cao (VDC) hàm số lượng giác và phương trình lượng giác có đáp án, giúp học sinh ôn thi THPT môn Toán. Trích dẫn tài liệu 135 câu vận dụng cao hàm số lượng giác và phương trình lượng giác ôn thi THPT môn Toán: + Cho phương trình (cos x + sin 2x)/cos 3x + 1 = 0. Khẳng định nào dưới đây là đúng? A Điều kiện xác định của phương trình là cos x(3 + 4 cos2 x) khác 0. B Phương trình đã cho vô nghiệm. C Nghiệm âm lớn nhất của phương trình là x = −π/2. D Phương trình tương đương với phương trình (sin x − 1) (2 sin x − 1) = 0. + Cho phương trình 3√tan x + 1(sin x + 2 cos x) = m(sin x + 3 cos x). Có tất cả bao nhiêu giá trị nguyên của m thuộc đoạn [−2018; 2018] để phương trình trên có nghiệm duy nhất x ∈ (0;π/2)? + Trong mặt phẳng với hệ tọa độ Oxy, cho parabol (P) : y = x2 − 4 và parabol (P0) là ảnh của (P) qua phép tịnh tiến theo −→v = (0; b), với 0 < b < 4. Gọi A, B là giao điểm của (P) với Ox, M, N là giao điểm của (P0) với Ox, I, J lần lượt là đỉnh của (P) và (P0). Tìm tọa độ điểm J để diện tích tam giác IAB bằng 8 lần diện tích tam giác JMN.

Nguồn: toanmath.com

Đọc Sách

Phương trình lượng giác thường gặp - Lê Văn Đoàn
Tài liệu gồm 44 trang được biên soạn bởi thầy Lê Văn Đoàn hướng dẫn phương pháp giải một số dạng phương trình lượng giác thường gặp và một số bài tập nhằm giúp học sinh tự rèn luyện. Dạng toán 1 . Phương trình bậc hai và bậc cao theo một hàm lượng giác. Quan sát và dùng các công thức biến đổi để đưa phương trình về cùng một hàm lượng giác (cùng sin hoặc cùng cos hoặc cùng tan hoặc cùng cot) với cung góc giống nhau. + Nhóm 1. Phương trình bậc hai cơ bản. + Nhóm 2. Sử dụng công thức (sinx)^2 + (cosx)^2 = 1. + Nhóm 3. Sử dụng công thức nhân đôi khi cung góc gấp đôi nhau. + Nhóm 4. Vừa hạ bậc vừa nhân đôi khi tồn tại cung góc gấp 4 lần nhau. + Nhóm 5. Sử dụng công thức liên quan đến tan, cot đưa về phương trình bậc hai. + Nhóm 6. Phương trình quy về phương trình bậc hai (dạng nâng cao). Dạng toán 2 . Phương trình lượng giác bậc nhất đối với sin và cos (phương trình cổ điển). + Nhóm 1. Dạng cơ bản asinx + bcosx = c. + Nhóm 2. Dạng asinx + bcosx = √(a^2 + b^2)sin(βx + γ) và asinx + bcosx = √(a^2 + b^2)cos(βx + γ) (với a^2 + b^2 khác 0). + Nhóm 3. Dạng asin(mx) + bcos(mx) + csin(nx) + dcos(nx) (với a^2 + b^2 = c^2 + d^2 ≠ 0). Dạng toán 3 . Phương trình lượng giác đẳng cấp. + Nhóm 1. Đẳng cấp bậc hai. + Nhóm 2. Đẳng cấp bậc ba, bậc bốn. Dạng toán 4 . Phương trình lượng giác đối xứng. Dạng toán 5 . Một số dạng khác. + Nhóm 1. Phương trình dạng msin2x + ncos2x + psinx + qcosx + r = 0. + Nhóm 2. Phương trình có chứa R(… tanX, cotX, sin2X, cos2X, tan2X …) sao cho cung của sin, cos gấp đôi cung của tan hoặc cotan. + Nhóm 3. Áp dụng công thức lượng giác tan(x + a)tan(b – x) = 1 khi a + b = pi/2 + kpi, cot(x + a)cot(b – x) = 1 khi a + b = pi/2 + kpi hay tan(a ± b) = (tana ± tanb)/(1 ± tanatanb). + Nhóm 4. Đặt số đo cung phức tạp để đưa về phương trình quen thuộc.
Chuyên đề hàm số lượng giác và phương trình lượng giác
Tài liệu gồm 52 trang phân dạng và tuyển chọn các bài tập chuyên đề hàm số lượng giác và phương trình lượng giác thuộc chương trình Đại số và Giải tích 11 chương 1. 1. HÀM SỐ LƯỢNG GIÁC Dạng 1. Tìm tập xác định của hàm số lượng giác. Dạng 2. Tính chẵn lẻ của hàm số. Dạng 3. Chu kỳ của hàm số lượng giác. Dạng 4. Chứng minh T0 là chu kì của một hàm số lượng giác. Dạng 5. Bảng biến thiên và đồ thị của hàm số lượng giác. Dạng 6. Sử dụng phép biến đổi đồng nhất và tính chất của hàm số lượng giác. Dạng 7. Các bài toán sử dụng bất đẳng thức đã biết để tìm giá trị lớn nhất và giá trị nhỏ nhất. Dạng 8. Các bài toán sử dụng tính đồng biến nghịch biến. Dạng 9. Các bài toán liên quan đến asin x + bcos x = c. 2. PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN CÓ ĐIỀU KIỆN [ads] 3. PHƯƠNG TRÌNH LƯỢNG GIÁC THƯỜNG GẶP 3.1. Phương trình bậc hai đối với một hàm số lượng giác. Dạng 1. Một số dạng cơ bản phương trình bậc hai đối với một hàm số lượng giác. 3.2 Phương trình bậc nhất đối với sin và cos. Dạng 2. Phương trình bậc nhất đối với sin và cos. 3.3 Phương trình thuần nhất đối với sin và cos. Dạng 3. Phương trình thuần nhất đối với sin và cos. 4. PHƯƠNG TRÌNH LƯỢNG GIÁC KHÔNG MẪU MỰC Dạng 1. Phương pháp đưa về tổng bình phương. Dạng 2. Phương pháp đối lập. Dạng 3. Phương pháp chứng minh nghiệm duy nhất. Dạng 4. Phương pháp đặt ẩn phụ. Dạng 5. Phương pháp đưa về hệ phương trình. Dạng 6. Một số phương trình lượng giác có cách giải đặc biệt. 4.1 Phương trình lượng giác có nghiệm trên khoảng, đoạn. 4.2 Dạng toán khác về phương trình lượng giác thường gặp.
Chuyên đề hàm số lượng giác và phương trình lượng giác - Đặng Thị Oanh
Tài liệu gồm 47 trang tóm gọn lý thuyết và bài tập trắc nghiệm chuyên đề hàm số lượng giác và phương trình lượng giác thuộc chương trình Đại số và Giải tích 11 chương 1, tài liệu được biên soạn bởi cô giáo Đặng Thị Oanh. §1. HÀM SỐ LƯỢNG GIÁC 1. Tập xác định của hàm số lượng giác. 2. Chu kỳ của hàm số lượng giác. 3. Tập giá trị của hàm số lượng giác. 4. Tính chẵn, lẻ của hàm số lượng giác. 5. Tập đơn điệu của hàm số lượng giác. 6. Đồ thị của hàm số lượng giác. 7. Bài tập trắc nghiệm hàm số lượng giác. §2. PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN [ads] §3. MỘT SỐ PHƯƠNG TRÌNH LƯỢNG GIÁC THƯỜNG GẶP 1. Phương trình bậc hai đối với một hàm số lượng giác. 2. Phương trình bậc nhất đối với sin x và cos x. 3. Phương trình đẳng cấp bậc hai. 4. Phương trình đối xứng. 5. Phương trình dạng khác. 6. Bài tập trắc nghiệm. ĐỀ THI ĐẠI HỌC, CAO ĐẴNG VÀ TNPT CÁC NĂM ÔN TẬP CHƯƠNG I
321 bài toán trắc nghiệm phương trình lượng giác thường gặp - Trần Tuấn Huy
Tài liệu gồm 36 trang được biên soạn bởi thầy Trần Tuấn Huy tuyển chọn 321 bài toán trắc nghiệm phương trình lượng giác thường gặp có đáp án. Các dạng toán được đề cập trong tài liệu : + Loại 1. Phương trình bậc nhất đối với một hàm số lượng giác. + Loại 2. Phương trình bậc cao đối với sinx. + Loại 3. Phương trình bậc cao đối với cosx. + Loại 4. Phương trình bậc cao đối với sinx và cosx. + Loại 5. Phương trình bậc cao đối với tanx và cotx. + Loại 6. Phương trình đẳng cấp. + Loại 7. Phương trình dạng asinx + bcosx = c. + Loại 8. Phương trình đối xứng và phản đối xứng. + Loại 9. Phương trình lượng giác chứa ẩn ở mẫu. + Loại 10. Phương trình lượng giác có chứa tham số. + Loại 11. Một số dạng toán khác.