Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề giải toán bằng cách lập phương trình - hệ phương trình ôn thi vào lớp 10

Tài liệu gồm 20 trang, hướng dẫn phương pháp giải và tuyển chọn các bài tập chuyên đề giải toán bằng cách lập phương trình – hệ phương trình, có đáp án và lời giải chi tiết, giúp học sinh lớp 9 ôn tập chuẩn bị cho kì thi tuyển sinh vào lớp 10 môn Toán; các bài toán trong tài liệu được trích từ các đề thi tuyển sinh lớp 10 môn Toán của các sở GD&ĐT và các trường THPT chuyên trên toàn quốc. PHƯƠNG PHÁP Để giải bài toán bằng cách lập phương trình, hệ phương trình ta thường thực hiện theo các bước sau: Bước 1: Chọn ẩn số (nêu đơn vị của ẩn và đặt điều kiện nếu cần). Bước 2: Tính các đại lượng trong bài toán theo giả thiết và ẩn số, từ đó lập phương trình hoặc hệ phương trình. Bước 3: Giải phương trình hoặc hệ phương trình vừa lập. Bước 4: Đối chiếu với điều kiện và trả lời. CÁC BÀI TOÁN CHUYỂN ĐỘNG Kiến thức cần nhớ: + Quãng đường = Vận tốc . Thời gian. + Vận tốc tỷ lệ nghịch với thời gian và tỷ lệ thuận với quãng đường đi được. + Nếu hai xe đi ngược chiều nhau khi gặp nhau lần đầu: Thời gian hai xe đi được là như nhau. Tổng quãng đường 2 xe đi được bằng đúng quãng đường cần đi của 2 xe. + Nếu hai phương tiện chuyển động cùng chiều từ hai địa điểm khác nhau là A và B, xe từ A chuyển động nhanh hơn xe từ B thì khi xe từ A đuổi kịp xe từ B ta luôn có hiệu quãng đường đi được của xe từ A với quãng đường đi được của xe từ B bằng quãng đường AB. + Đối với (Ca nô, tàu xuồng) chuyển động trên dòng nước: Ta cần chú ý: Khi đi xuôi dòng: Vận tốc ca nô = Vận tốc riêng + Vận tốc dòng nước. Khi đi ngược dòng: Vận tốc ca nô = Vận tốc riêng – Vận tốc dòng nước. Vận tốc của dòng nước là vận tốc của một vật trôi tự nhiên theo dòng nước (Vận tốc riêng của vật đó bằng 0). BÀI TOÁN LIÊN QUAN ĐẾN NĂNG SUẤT LAO ĐỘNG, CÔNG VIỆC. Ta cần chú ý: Khi giải các bài toán liên quan đến năng suất thì liên hệ giữa ba đại lượng là: Khối lượng công việc = năng suất lao động × thời gian. BÀI TẬP RÈN LUYỆN

Nguồn: toanmath.com

Đọc Sách

Chuyên đề hàm số và đồ thị ôn thi vào môn Toán Nguyễn Đăng Tuấn
Nội dung Chuyên đề hàm số và đồ thị ôn thi vào môn Toán Nguyễn Đăng Tuấn Bản PDF - Nội dung bài viết Chuyên Đề Hàm Số Và Đồ Thị Ôn Thi Toán Lớp 10 - Nguyễn Đăng Tuấn Chuyên Đề Hàm Số Và Đồ Thị Ôn Thi Toán Lớp 10 - Nguyễn Đăng Tuấn Tài liệu "Chuyên đề hàm số và đồ thị ôn thi vào lớp 10 môn Toán" được biên soạn bởi Thạc sĩ Nguyễn Đăng Tuấn với 52 trang, bao gồm 105 bài tập chuyên đề hàm số và đồ thị ôn thi vào môn Toán. Mỗi bài tập đều có đáp án và lời giải chi tiết, giúp học sinh hiểu rõ từng bước giải quyết vấn đề. Qua tài liệu này, bạn sẽ được hướng dẫn giải các bài tập như: Đặt hàm số y = mx + m^2 - 1/4 (trong đó m là tham số) có đồ thị là đường thẳng (d). Hỏi m nào thì (d) đi qua điểm A(-1;2)? Xác định giá trị của m sao cho đường thẳng (d) song song với đường thẳng (Δ) có phương trình y = x + 5/1. Chứng minh rằng đường thẳng (d) luôn đi qua một điểm cố định khi m thay đổi. Ngoài ra, tài liệu còn cung cấp các bài tập khác như tìm tọa độ giao điểm của hai đồ thị, tính diện tích của tứ giác được tạo bởi hai đồ thị, xác định điểm cắt của đồ thị với đường thẳng, và nhiều bài tập khác giúp học sinh ôn luyện và nắm vững kiến thức hàm số và đồ thị. Để biết thêm thông tin chi tiết, vui lòng tải tài liệu và tham khảo để đạt kết quả cao trong kỳ thi Toán sắp tới!
Các dạng toán và phương pháp giải hệ phương trình đại số Nguyễn Quốc Bảo
Nội dung Các dạng toán và phương pháp giải hệ phương trình đại số Nguyễn Quốc Bảo Bản PDF - Nội dung bài viết Các dạng toán và phương pháp giải hệ phương trình đại số Nguyễn Quốc Bảo Các dạng toán và phương pháp giải hệ phương trình đại số Nguyễn Quốc Bảo Tài liệu này bao gồm 203 trang, được biên soạn bởi thầy giáo Nguyễn Quốc Bảo, chuyển tập các dạng toán và hướng dẫn cách giải hệ phương trình đại số. Được xem là tài liệu lý tưởng để bồi dưỡng học sinh giỏi ở cấp độ lớp 8 và 9 cũng như ôn thi tuyển sinh vào lớp 10 môn Toán. Mục lục của tài liệu bao gồm nhiều phần như sau: Phần I. MỘT SỐ DẠNG HỆ PHƯƠNG TRÌNH THƯỜNG GẶP 1. Hệ phương trình bậc nhất hai ẩn 2. Hệ gồm một phương trình bậc hai và một... Từ những dạng toán và phương pháp giải được tập hợp trong tài liệu này, học sinh sẽ có cơ hội hiểu rõ hơn về các kiến thức, cách giải và ứng dụng trong thực tế, từ đó nâng cao kỹ năng giải toán của mình.
Tài liệu ôn thi tuyển sinh vào môn Toán Lư Sĩ Pháp
Nội dung Tài liệu ôn thi tuyển sinh vào môn Toán Lư Sĩ Pháp Bản PDF - Nội dung bài viết Đánh giá tài liệu ôn thi tuyển sinh vào môn Toán Lư Sĩ Pháp Đánh giá tài liệu ôn thi tuyển sinh vào môn Toán Lư Sĩ Pháp Tài liệu ôn thi tuyển sinh vào môn Toán do thầy giáo Lư Sĩ Pháp biên soạn là một công cụ hữu ích giúp học sinh chuẩn bị cho kỳ thi tuyển sinh vào lớp 10. Với tổng cộng 63 trang, tài liệu tóm tắt lý thuyết và tuyển chọn các dạng bài tập phong phú, đa dạng giúp học sinh hiểu rõ hơn về các vấn đề chính trong môn Toán. Trong tài liệu, có những vấn đề cơ bản như rút gọn và chứng minh biểu thức, phương trình, hệ phương trình, ứng dụng định lí Vi-ét, đường thẳng, parabol, giải toán bằng cách lập phương trình hoặc hệ phương trình, hình học và một số khác. Các vấn đề được trình bày một cách logic, chuẩn xác, giúp học sinh nắm vững kiến thức cũng như phát triển kỹ năng giải bài tập một cách linh hoạt. Tài liệu cũng giới thiệu và hướng dẫn cách giải từng dạng bài tập một cách chi tiết, dễ hiểu. Điều này giúp học sinh tự tin hơn khi đối mặt với bài tập trong kỳ thi tuyển sinh. Tổng cộng, tài liệu ôn thi tuyển sinh vào môn Toán Lư Sĩ Pháp là một nguồn tư liệu học tập hữu ích, giúp học sinh nắm vững kiến thức, rèn luyện kỹ năng và chuẩn bị tốt cho kỳ thi sắp tới.
Tài liệu luyện thi vào môn Toán phần Hình học Vũ Xuân Hưng
Nội dung Tài liệu luyện thi vào môn Toán phần Hình học Vũ Xuân Hưng Bản PDF - Nội dung bài viết Tài liệu luyện thi vào môn Toán phần Hình học của thầy Vũ Xuân Hưng Tài liệu luyện thi vào môn Toán phần Hình học của thầy Vũ Xuân Hưng Tài liệu luyện thi này bao gồm 122 trang, được biên soạn bởi thầy giáo Vũ Xuân Hưng. Trong tài liệu, thầy Hưng tổng hợp kiến thức quan trọng cần nhớ, các dạng bài tập và hướng dẫn giải chi tiết. Tài liệu cũng tuyển chọn các bài tập từ cơ bản đến nâng cao về các chủ đề Hình học phẳng ở bậc trung học cơ sở. Đây sẽ là nguồn tài liệu hữu ích giúp học sinh ôn tập chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 môn Toán. Phần Chuyên đề 7 - Hình học phẳng: A. Kiến thức cần nhớ: Hệ thức lượng trong tam giác vuông. Các tỉ số lượng giác của góc nhọn trong tam giác vuông. Góc và đường tròn. B. Các dạng bài tập cơ bản: Dạng Toán lớp 1: Chứng minh tứ giác nội tiếp đường tròn. Dạng Toán lớp 2: Chứng minh tứ giác đã cho là hình bình hành, hình thoi, hình chữ nhật, hình vuông. Dạng Toán lớp 3: Chứng minh đường thẳng là tiếp tuyến của đường tròn. Dạng Toán lớp 4: Chứng minh ba điểm thẳng hàng. Dạng Toán lớp 5: Chứng minh tỉ lệ độ dài đoạn thẳng. Dạng Toán lớp 6: Chứng minh đường thẳng là tiếp tuyến của đường tròn. Đặc biệt, tài liệu còn bao gồm tuyển tập đề thi tuyển sinh vào lớp 10 môn Toán, giúp học sinh ôn tập kỹ lưỡng và tự tin trước kỳ thi sắp tới. Đừng bỏ lỡ cơ hội nâng cao kiến thức và kỹ năng giải bài tập của mình!