Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề vào môn Toán (chuyên) năm 2022 2023 trường chuyên Hạ Long Quảng Ninh

Nội dung Đề vào môn Toán (chuyên) năm 2022 2023 trường chuyên Hạ Long Quảng Ninh Bản PDF - Nội dung bài viết Đề thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm 2022-2023 trường chuyên Hạ Long, Quảng Ninh Đề thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm 2022-2023 trường chuyên Hạ Long, Quảng Ninh Chào đón quý thầy cô giáo và các em học sinh lớp 9! Đây là đề thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2022-2023 của trường THPT chuyên Hạ Long, tỉnh Quảng Ninh. Các bài toán trong đề thi đều được chọn lọc kỹ lưỡng để đảm bảo tính chất chuyên sâu và đòi hỏi của môn Toán chuyên. Trích dẫn đề vào lớp 10 môn Toán (chuyên) năm 2022-2023 trường chuyên Hạ Long - Quảng Ninh: 1. Chứng minh rằng với x là số nguyên bất kỳ thì 25x + 1 không thể viết được dưới dạng tích hai số nguyên liên tiếp. 2. Cho tam giác ABC có ba góc nhọn, đường cao AH. Đường tròn (O) đường kính BC cắt AB tại E (E khác B). Gọi D là một điểm trên cung nhỏ BE (D khác B và D khác E). Hai đường thẳng DC và AH cắt nhau tại G, đường thẳng EG cắt đường tròn (O) tại M (M khác E), hai đường thẳng AH và BM cắt nhau tại I, đường thẳng CI cắt đường tròn (O) tại P (P khác). a) Chứng minh tứ giác DGIP nội tiếp; b) Chứng minh GA.GI = GE.GM; c) Hai đường thẳng AD và BC cắt nhau tại N, DB và CP cắt nhau tại K. Chứng minh hai đường thẳng NK và AH song song với nhau. 3. Chứng minh rằng trong 16 số nguyên dương đôi một khác nhau nhỏ hơn 23, bao giờ cũng tìm được hai số khác nhau có tích là số chính phương. Hy vọng đề thi này sẽ giúp các em học sinh thử sức và phát huy tốt năng lực Toán học của mình. Chúc quý thầy cô và các em học sinh có kỳ thi thành công!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh vào năm 2021 trường THPT chuyên KHTN Hà Nội
Nội dung Đề tuyển sinh vào năm 2021 trường THPT chuyên KHTN Hà Nội Bản PDF - Nội dung bài viết Đề thi tuyển sinh vào lớp 10 trường THPT chuyên Khoa học Tự nhiên Hà Nội năm 2021 Đề thi tuyển sinh vào lớp 10 trường THPT chuyên Khoa học Tự nhiên Hà Nội năm 2021 Ngày 15 tháng 06 năm 2021, trường THPT chuyên Khoa học Tự nhiên, Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội đã tổ chức kỳ thi tuyển sinh vào lớp 10 môn Toán cho năm học 2021 - 2022. Đề tuyển sinh gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút, đề thi được kèm đáp án và lời giải chi tiết được biên soạn bởi các tác giả uy tín. Trích dẫn đề tuyển sinh: Tìm số nguyên dương n nhỏ nhất, biết rằng khi chia n cho 7, 9, 11, 13, ta nhận được các số dư tương ứng là 3, 4, 5, 6. Cho tam giác nhọn ABC có điểm P nằm trong tam giác. Chứng minh một số tính chất về góc và vị trí của các điểm trên tam giác ABC. Cho tập hợp A = {1, 2, ..., 2021}. Tìm số nguyên dương k lớn nhất sao cho có thể chọn được k số phân biệt từ tập A, sao cho tổng của hai số bất kỳ trong k số đó không chia hết cho hiệu của chúng. Đề thi tuyển sinh vào trường THPT chuyên Khoa học Tự nhiên Hà Nội năm 2021 là cơ hội để các thí sinh thể hiện kiến thức và khả năng giải quyết bài toán Toán một cách sáng tạo và logic. Chúc các thí sinh thành công!
Đề tuyển sinh vào môn Toán năm 2021 2022 sở GD ĐT Hòa Bình
Nội dung Đề tuyển sinh vào môn Toán năm 2021 2022 sở GD ĐT Hòa Bình Bản PDF - Nội dung bài viết Đề tuyển sinh vào môn Toán năm 2021 - 2022 sở GD&ĐT Hòa Bình Đề tuyển sinh vào môn Toán năm 2021 - 2022 sở GD&ĐT Hòa Bình Xin chào quý thầy cô và các em học sinh! Sytu xin giới thiệu đến mọi người Đề tuyển sinh vào lớp 10 môn Toán năm 2021 - 2022 của sở GD&ĐT Hòa Bình. Đề thi bao gồm các câu hỏi có đáp án và lời giải chi tiết để các em có thể ôn tập và chuẩn bị tốt nhất cho kỳ thi sắp tới. Một số câu hỏi trong đề tuyển sinh bao gồm: Cho tam giác ABC vuông tại A, đường cao AH, biết HB = 2 cm, HC = 8 cm. Hãy tính độ dài các cạnh AB và AC. Một ô tô và một xe máy xuất phát cùng một lúc từ hai tỉnh cách nhau 200km, đi ngược chiều và gặp nhau sau 2 giờ. Hãy tìm vận tốc của ô tô và xe máy, biết rằng nếu vận tốc của ô tô tăng thêm 10 km/h và vận tốc của xe máy giảm đi 5 km/h thì vận tốc của ô tô bằng gấp đôi vận tốc của xe máy. Cho hình vuông ABCD, các điểm M, N thay đổi trên các cạnh BC, CD sao cho góc MAN bằng 45°. Gọi P, Q lần lượt là giao điểm của AM, AN với BD. Chứng minh rằng tứ giác ABMQ và tứ giác MNQP là các tứ giác nội tiếp, NA là phân giác của góc MND, và MN tiếp xúc với một đường tròn cố định. Hy vọng rằng đề thi này sẽ giúp các em tự tin và chuẩn bị tốt cho kỳ thi sắp tới. Chúc mọi người thành công!
Đề tuyển sinh chuyên môn Toán (chuyên) năm 2021 trường ĐHSP Hà Nội
Nội dung Đề tuyển sinh chuyên môn Toán (chuyên) năm 2021 trường ĐHSP Hà Nội Bản PDF - Nội dung bài viết Đề tuyển sinh chuyên môn Toán (chuyên) năm 2021 trường ĐHSP Hà Nội Đề tuyển sinh chuyên môn Toán (chuyên) năm 2021 trường ĐHSP Hà Nội Xin chào quý thầy cô và các bạn học sinh! Sytu xin giới thiệu đến quý vị đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021 của trường ĐHSP Hà Nội. Đề thi này bao gồm đáp án và lời giải chi tiết để giúp các bạn ôn tập hiệu quả. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021 trường ĐHSP Hà Nội: - Cho tam giác ABC nội tiếp đường tròn (O) có bán kính R. Điểm D và E là hai điểm cố định trên cát tuyến qua C sao cho D nằm giữa C và E. Gọi M là giao điểm thứ hai của hai đường tròn ngoại tiếp tam giác BCD và ACE. Chứng minh rằng: Tứ giác OBME là tứ giác nội tiếp; CD * CE = CO * R * R; M luôn di chuyển trên một đường tròn cố định. - Tìm tất cả các số nguyên dương N sao cho N có thể biểu diễn duy nhất dưới dạng N = 2^(x+y) với x, y là hai số nguyên dương. - Cho a, b, c là ba số nguyên dương sao cho mỗi số trong ba số đó đều là lũy thừa của 2. Biết rằng phương trình ax^2 + bx + c = 0 có hai nghiệm nguyên. Chứng minh rằng hai nghiệm của phương trình trên bằng nhau. Hy vọng rằng đề thi này sẽ giúp các bạn tự tin và chuẩn bị tốt nhất cho kỳ thi sắp tới. Chúc các bạn thành công!
Đề tuyển sinh môn Toán năm 2021 2022 sở GD ĐT Quảng Bình
Nội dung Đề tuyển sinh môn Toán năm 2021 2022 sở GD ĐT Quảng Bình Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán năm 2021 – 2022 sở GD&ĐT Quảng Bình Đề tuyển sinh môn Toán năm 2021 – 2022 sở GD&ĐT Quảng Bình Sytu mang đến cho quý thầy cô và các em học sinh đáp án, lời giải chi tiết và hướng dẫn chấm điểm đề tuyển sinh lớp 10 môn Toán năm học 2021 – 2022 sở GD&ĐT Quảng Bình; kỳ thi diễn ra vào ngày 08 tháng 06 năm 2021. Một số câu hỏi trong đề tuyển sinh: 1. Đường tròn O có đường kính AB, dây cung MN vuông góc với AB tại điểm I sao cho AI = BI. Trên đoạn thẳng MI lấy điểm H (H khác M và I), tia AH cắt đường tròn O tại điểm thứ hai là K. Chứng minh rằng: a) Tứ giác BIHK nội tiếp đường tròn. b) AHM đồng dạng với AMK. c) 2AH.AK = BI.AB. 2. Giải phương trình 2x^2 + (m-6)x + 4 = 0 (với m là tham số). a) Tìm nghiệm của phương trình khi m = 1. b) Tìm tất cả các giá trị của m để phương trình có hai nghiệm thỏa điều kiện. 3. Chứng minh rằng: 1/(a+15) + 1/(b+15) ≥ 4. Nếu bạn quan tâm và muốn đạt kết quả cao trong kỳ thi tuyển sinh, hãy tham gia luyện đề và ôn tập theo hướng dẫn của Sytu để sẵn sàng đối mặt với bài thi Toán sở GD&ĐT Quảng Bình.