Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 - 2023 sở GDĐT Hà Tĩnh

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn đội tuyển dự thi học sinh giỏi cấp Quốc gia môn Toán bậc THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Hà Tĩnh; kỳ thi được diễn ra trong hai ngày: 22/09/2022 (vòng 1) và 23/09/2022 (vòng 2). Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 – 2023 sở GD&ĐT Hà Tĩnh : + Cho trước a, b thuộc N* thỏa mãn a2 + b2 là tích của các số nguyên tố phân biệt và mỗi số nguyên tố đó đều có dạng 8k -3 với k thuộc N*. a) Giả sử tồn tại p = 8l – 3 (l thuộc N*) là một ước nguyên tố của a4 + b4. Chứng minh rằng p là ước của cả a và b. b) Tìm tất cả các cặp (m; n) với m,n thuộc Z mà am + bn và an – bm là các số chính phương. + Với mỗi cặp số nguyên dương (m; n), giả sử ban đầu có m + n hộp được đánh số từ 1 đến m + n, trong đó m hộp đầu tiên mỗi hộp chứa 1 bi đen và n hộp còn lại mỗi hộp chứa 1 bi trắng. Trong mỗi bước, ta được quyền chuyển một bi đen từ hộp i sang hộp i + 1 và một bi trắng từ hộp j sang hộp j – 1 với điều kiện i – j là một số chẵn. Ở đây giả sử rằng mỗi hộp đều đủ lớn để có thể chứa toàn bộ số bi. Cặp số (m; n) được gọi là tốt nếu sau hữu hạn bước chuyển thì n hộp đầu tiên mỗi hộp chứa 1 bi trắng và m hộp còn lại mỗi hộp chứa 1 bi đen. Nếu trái lại thì ta nói (m; n) là cặp xấu. 1) Chứng minh rằng cặp (1; 2021) là cặp xấu. b) Tìm số cặp số nguyên dương (m; n) tốt trong mỗi trường hợp một m + n = 2022 và m + n = 2023. + An và Bình đến cửa hàng mua kẹo. Trong cửa hàng có các túi kẹo loại 1 chiếc, 2 chiếc, 4 chiếc … 2^30 chiếc. Mỗi loại có nhiều túi. Mỗi bạn chọn mua một số túi ở nhiều loại và mỗi loại có thể mua nhiều túi. a) Số túi ít nhất An cần phải mua để có đúng 1000 chiếc kẹo là bao nhiêu? b) Có bao nhiêu cách chọn 5 túi kẹo đôi một khác loại sao cho tổng số chiếc kẹo được chọn không vượt quá 2023 và nếu túi loại 2^n được chọn (n thuộc N và n =< 29) thì túi loại 2^n+1 không được chọn? c) Giả sử sau khi mua, An và Bình lần lượt có n và n + 1 (n thuộc N và 0 =< n =< 2023) chiếc kẹo, đồng thời An có nhiều hơn Bình 7 túi kẹo. Có bao nhiêu giá trị n thỏa mãn các điều kiện trên, biết An và Bình luôn mua ít túi nhất có thể?

Nguồn: toanmath.com

Đọc Sách

Đề thi thử HSG Toán vòng 1 lần 2 năm 2020 - 2021 trường chuyên Hùng Vương - Bình Dương
Ngày … tháng 09 năm 2020, trường THPT chuyên Hùng Vương, tỉnh Bình Dương tổ chức kỳ thi thử cho đội tuyển học sinh giỏi môn Toán vòng 1 lần 2 năm học 2020 – 2021. Đề thi thử HSG Toán vòng 1 lần 2 năm 2020 – 2021 trường chuyên Hùng Vương – Bình Dương gồm có 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 180 phút (không kể thời gian phát đề), thí sinh không được sử dụng tài liệu và máy tính khi làm bài. Trích dẫn đề thi thử HSG Toán vòng 1 lần 2 năm 2020 – 2021 trường chuyên Hùng Vương – Bình Dương : + Cho tam giác ABC nhọn nội tiếp đường tròn (O), có trực tâm H. Gọi M, N, P lần lượt là trung điểm của BC, CA, AB. Đường tròn (MNP) lần lượt cắt các đường tròn (MCA), (MAB) tại điểm thứ hai là E, F. Giả sử ME, MF theo thứ tự cắt AC, AB tại K, L. a) Chứng minh rằng OH vuông góc với KL tại điểm S. b) Gọi G là trọng tâm của tam giác ABC. Các điểm Y, Z lần lượt là hình chiếu của B, C lên AC, AB. Gọi X là giao điểm của KZ và LY. Chứng minh rằng A, G, S, X cùng nằm trên một đường tròn. + Tìm tất cả các đa thức P(x) với hệ số thực sao cho P(a)^2 + P(b)^2 + P(c)^2 với mọi bộ số (a;b;c) thỏa mãn ab + bc + ca + 1 = 0. + Tìm tất cả các bộ ba số tự nhiên (m;n;k) thỏa mãn 5^m + 7^n = k^3.
Đề thi HSG Toán 12 (vòng 2) năm 2020 - 2021 trường chuyên Nguyễn Du - Đắk Lắk
Thứ Năm ngày 10 tháng 09 năm 2020, trường THPT chuyên Nguyễn Du, tỉnh Đắk Lắk tổ chức kỳ thi chọn đội tuyển học sinh giỏi môn Toán lớp 12 năm học 2020 – 2021 vòng thi số 2. Đề thi HSG Toán 12 (vòng 2) năm 2020 – 2021 trường chuyên Nguyễn Du – Đắk Lắk được biên soạn theo dạng đề tự luận, đề thi gồm có 01 trang với 05 bài toán, thời gian học sinh làm bài thi là 180 phút. Trích dẫn đề thi HSG Toán 12 (vòng 2) năm 2020 – 2021 trường chuyên Nguyễn Du – Đắk Lắk : + Cho tam giác ABC (AC > AB). Lấy hai điểm M, N lần lượt trên AB và AC sao cho MN song song với BC. Gọi P là giao điểm của hai đoạn thẳng BN và CM. Gọi A’ là điểm đối xứng của A qua đường thẳng BC; (w) là đường tròn ngoại tiếp tam giác AMN. a) Gọi E là điểm thuộc đường tròn (w) sao cho AE // MN. Chứng minh rằng: E, P, A’ thẳng hàng. b) Gọi F là giao điểm thứ hai của A’P với đường tròn (w) và I là tâm đường tròn ngoại tiếp tam giác AA’F. Chứng minh IF tiếp xúc với đường tròn ngoại tiếp tam giác BFC. + Cho tập hợp A = {1;2; . . . ; 101}, tô màu ít nhất 50 phần tử của A sao cho: nếu a và b thuộc A (a, b không nhất thiết phân biệt) được tô màu và a + b thuộc A thì a + b cũng được tô màu. Gọi S là tổng tất cả các số không được tô màu của A. Tìm giá trị lớn nhất của S. + Tìm tất cả n tự nhiên để 2^2^2^ . . .  ^2 (n số 2) – 2 viết được thành a^3 + b^3 + c^3 với a, b, c nguyên.
Đề thi HSG Toán 12 (vòng 1) năm 2020 - 2021 trường chuyên Nguyễn Du - Đắk Lắk
Thứ Tư ngày 09 tháng 09 năm 2020, trường THPT chuyên Nguyễn Du, tỉnh Đắk Lắk tổ chức kỳ thi chọn đội tuyển học sinh giỏi môn Toán lớp 12 năm học 2020 – 2021 vòng thi số 1. Đề thi HSG Toán 12 (vòng 1) năm 2020 – 2021 trường chuyên Nguyễn Du – Đắk Lắk được biên soạn theo dạng đề tự luận, đề thi gồm có 01 trang với 05 bài toán, thời gian học sinh làm bài thi là 180 phút. Trích dẫn đề thi HSG Toán 12 (vòng 1) năm 2020 – 2021 trường chuyên Nguyễn Du – Đắk Lắk : + Cho tứ giác lồi ABCD nội tiếp đường tròn (C). Gọi M, N, P lần lượt là giao điểm của các cặp đường thẳng AB và CD, AD và BC, AC và BD. Gọi I1, I2, I3, I4 lần lượt là tâm đường tròn bàng tiếp các tam giác ABN, BCM, CDN và ADM tương ứng với các đỉnh A, C, D và D. a) Chứng minh các điểm I1, I2, I3, I4 đồng viên. b) Gọi I là tâm đường tròn qua I1, I2, I3, I4. Chứng minh PI vuông góc với MN. + Tìm tất cả các hàm số f: R → R thỏa mãn: f(x + f(y)) – f(f(x) – x) = f(y) – f(x) + 2x + 2y với mọi x, y thuộc R. + Chứng minh rằng với mọi n thuộc Z+, luôn tồn tại m thuộc N sao cho: (√2 – 1)^n = √(m + 1) – √m.
Đề thi học sinh giỏi Toán THPT cấp tỉnh năm 2019 - 2020 sở GDĐT Hậu Giang
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi học sinh giỏi Toán THPT cấp tỉnh năm 2019 – 2020 sở GD&ĐT Hậu Giang; kỳ thi được diễn ra vào ngày 02 tháng 07 năm 2020; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học sinh giỏi Toán THPT cấp tỉnh năm 2019 – 2020 sở GD&ĐT Hậu Giang : + Trong đợt ứng phó đại dịch COVID – 19 vừa qua, ngành y tế của một tỉnh miền Tây đã chọn ngẫu nhiên một tổ gồm 3 nhân viên trong 6 nhân viên y tế dự phòng của tỉnh và 16 nhân viên y tế của các trung tâm y tế dự phòng cơ sở để thực hiện hành động chống dịch đột xuất. Tính xác suất để 3 nhân viên y tế được chọn có cả nhân viên y tế của tỉnh và nhân viên y tế của cơ sở. + Cho hình chóp S ABCD có đáy ABCD là hình vuông, SA vuông góc với mặt phẳng đáy, SA a 2 góc giữa đường thẳng SC và mặt phẳng đáy bằng 0 45. Gọi M là trung điểm của cạnh AB. Tính theo a khoảng cách h giữa hai đường thẳng DM và SB. + Trong mặt phẳng với hệ tọa độ Oxy, cho tứ giác ABCD nội tiếp trong đường tròn đường kính BD. Gọi H K lần lượt là hình chiếu vuông góc của điểm A trên các đường thẳng BC BD và E là giao điểm của hai đường thẳng HK và AC. Biết đường thẳng AC đi qua điểm M (3;2) và nhận n (1;-1) làm vectơ pháp tuyến. Tìm tọa độ các điểm E và A, biết điểm H (1;3), K(2;2) và hoành độ điểm A lớn hơn 2.