Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi vào 10 môn Toán năm 2020 - 2021 trường THPT chuyên Lam Sơn - Thanh Hóa

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi vào 10 môn Toán năm 2020 – 2021 trường THPT chuyên Lam Sơn – Thanh Hóa, đề thi có đáp án và lời giải chi tiết, kỳ thi được diễn ra vào ngày 17 tháng 07 năm 2020. Trích dẫn đề thi vào 10 môn Toán năm 2020 – 2021 trường THPT chuyên Lam Sơn – Thanh Hóa : + Trên một đường tròn người ta lấy 2024 điểm phân biệt, các điểm được tô màu xanh và màu đỏ xen kẽ nhau. Tại mỗi điểm ta ghi một số thực khác 0 và 1 sao cho quy tắc sau được thỏa mãn “số ghi tại điểm màu xanh bằng tổng của hai số ghi màu đỏ kể nó; số ghi màu đỏ bằng tích của hai số ghi tại hai điểm màu xanh kế nó”. Tính tổng của 2024 số đó. [ads] + Cho tam giác ABC nhọn có BAC > 45 độ. Về phía ngoài tam giác ABC dựng các hình vuông ABMN và ACPQ. Đường thẳng AQ cắt đoạn thẳng BM tại E, đường thẳng AN cắt đoạn thẳng CP tại F. a) Chứng minh tứ giác EFQN nội tiếp được một đường tròn. b) Gọi I là trung điểm của đoạn thẳng EF. Chứng minh I là tâm đường trong ngoại tiếp tam giác ABC. c) Đường thẳng MN cắt đường thẳng PQ tại D. Các đường tròn ngoại tiếp tam giác DMQ và DNP cắt nhau tại K với K khác D. Các tiếp tuyến của đường tròn ngoại tiếp tam giác ABC tại B và C cắt nhau tại J. Chứng minh bốn điểm D, A, K, J thẳng hàng. + Chứng minh rằng nếu 2^n = 10a + b với a, b, n là các số tự nhiên thỏa mãn 0 < b < 10 và n > 3 thì ab chia hết cho 6.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh vào lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Quảng Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (dành cho tất cả các thí sinh) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Quảng Ninh; kỳ thi được diễn ra vào sáng thứ Sáu ngày 02 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh vào lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Quảng Ninh : + Hai địa điểm A và B cách nhau 280 km. Hai ô tô cùng xuất phát từ A đến B. Biết vận tốc của xe thứ nhất lớn hơn vận tốc của xe thứ hai 10 km/h và xe thứ nhất đến B sớm hơn xe thứ hai 30 phút. Tính vận tốc mỗi xe? + Cho nửa đường tròn tâm O, đường kính BC. Trên nửa đường tròn (O) lấy điểm A (A khác B và C), gọi H là hình chiếu của A trên BC. Trên cung AC của nửa đường tròn (O) lấy điểm D (D khác A và C), gọi E là hình chiếu của A trên BD, I là giao điểm của hai đường thẳng AH và BD. a) Chứng minh tứ giác ABHE nội tiếp. b) Chứng minh BI.BD = BH.BC. c) Chứng minh hai tam giác AHE và ACD đồng dạng. d) Hai đường thẳng AE và DH cắt nhau tại F. Chứng minh IF // AD. + Một người thợ cơ khí cần cắt vừa đủ một cây sắt dài 100 dm thành các đoạn để hàn lại thành khung một hình lập phương và một hình hộp chữ nhật. Biết hình hộp chữ nhật có chiều dài gấp 6 lần chiều rộng và chiều cao bằng chiều rộng (hình vẽ minh họa). Tìm độ dài của các đoạn sắt sao cho tổng thể tích của hai hình thu được nhỏ nhất?
Đề tuyển sinh lớp 10 THPT môn Toán năm 2023 - 2024 sở GDĐT Phú Yên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Phú Yên; đề thi cấu trúc 30% trắc nghiệm (12 câu) kết hợp 70% tự luận (04 câu), thời gian làm bài 120 phút; kỳ thi được diễn ra vào thứ Năm ngày 01 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 THPT môn Toán năm 2023 – 2024 sở GD&ĐT Phú Yên : + Cho hai hàm số y = 1/2×2 và y = ax + b. a) Tìm các hệ số a, b biết đường thẳng y = ax + b đi qua điểm M(-2;-2) và N(4;1). b) Với các giá trị a, b vừa tìm được, hãy: Tìm giao điểm của đường thẳng y = ax + b và đồ thị hàm số y = -1/2×2 bằng phương pháp đại số. Vẽ đồ thị hai hàm số y = -1/2×2 và y = ax + b trên cùng một mặt phẳng tọa độ. + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một khu đất hình chữ nhật có tỷ số hai kích thước là 2/3. Người ta làm một sân bóng đá mini 5 người ở giữa, chừa lối đi xung quanh (lối đi thuộc khu đất). Lối đi rộng 2 m và diện tích 224 m2. Tính các kích thước của khu đất. + Cho tam giác ABC vuông tại A, có AB = 3 cm, AC = 4 cm. Đường tròn tâm B bán kính BA và đường tròn tâm C bán kính CA cắt nhau tại điểm thứ hai D. a) Chứng minh tứ giác ABDC nội tiếp được. b) Tính độ dài đoạn AD. c) Một đường thẳng d quay quanh A cắt (B) tại E (E khác A) và cắt (C) tại F (F khác A). Gọi M là giao điểm của EB và FC. Khi d thay đổi thì điểm M chạy trên đường nào?
Đề tuyển sinh lớp 10 môn Toán (không chuyên) năm 2023 - 2024 sở GDĐT Bạc Liêu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 THPT môn Toán (không chuyên) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bạc Liêu; kỳ thi được diễn ra vào ngày 31 tháng 05 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (không chuyên) năm 2023 – 2024 sở GD&ĐT Bạc Liêu : + Tìm hệ số a để đồ thị hàm số y = ax2 đi qua điểm M(-1;2). Vẽ đồ thị của hàm số y = ax2 với giá trị a vừa tìm được. + Cho phương trình bậc hai x2 – 2x + m – 2 = 0 (1) với m là tham số. a) Xác định các hệ số a, b, c của phương trình (1). b) Giải phương trình (1) khi m = -1. c) Tìm giá trị của m để phương trình (1) có hai nghiệm x1, x2 thỏa mãn: 3(x1² + x2²) + x1²x2² = 11. + Trên đường tròn tâm O, đường kính AB = 2R, lấy hai điểm C, D sao cho CD vuông góc với B tại H (H thuộc đoạn OA, H khác O và A). Gọi M là điểm trên đoạn CD (M khác C và D, CM > DM), E là giao điểm của AM với đường tròn (O) (E khác A), N là giao điểm của hai đường thẳng BE và CD. a) Chứng minh tứ giác MEBH nội tiếp dường tròn. b) Chứng minh: NC.ND = NB.NE. c) Khi AC = R, xác định vị trí của điểm M để 2AM + AE đạt giá trị nhỏ nhất.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 trường THPT chuyên ĐHSP Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm 2023 trường THPT chuyên Đại học Sư Phạm Hà Nội, thành phố Hà Nội; đề thi dùng riêng cho thí sinh thi vào lớp chuyên Toán và chuyên Tin học (vòng 2), có đáp án và lời giải chi tiết. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 trường THPT chuyên ĐHSP Hà Nội : + Cho tam giác ABC. Đường tròn (I) nội tiếp tam giác ABC lần lượt tiếp xúc với các cạnh BC, CA, AB tại các điểm D, E, F. Hai đường thẳng MG, NE cắt nhau tại điểm P. Chứng minh rằng: a) EG song song với MN. b) Điểm P thuộc đường tròn (I). + Bảy lục giác đều được sắp xếp và tô màu bằng hai màu trắng, đen như ở Hình 1. Mỗi lần cho phép chọn ra một lục giác đều, đổi màu của lục giác đó và của tất cả các lục giác đều chung cạnh với lục giác đó (trắng thành đen và đen thành trắng). Chứng minh rằng dù có thực hiện cách làm trên bao nhiêu lần đi nữa, cũng không thể nhận được các lục giác đều được ô màu như ở Hình 2. + Chứng minh rằng tồn tại số nguyên dương n > 102023 sao cho tổng tất cả các số nguyên tố nhỏ hơn n là một số nguyên tố cùng nhau với n.