Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán THPTQG 2020 lần 1 trường THPT Hoàng Lê Kha - Thanh Hóa

Chỉ còn khoảng 03 tháng nữa, kỳ thi THPT Quốc gia môn Toán do Bộ Giáo dục và Đào tạo tổ chức sẽ chính thức diễn ra. giới thiệu đến các em học sinh khối 12 nội dung đề thi và lời giải chi tiết đề thi thử Toán THPTQG 2020 lần 1 trường THPT Hoàng Lê Kha – Thanh Hóa, hi vọng sẽ giúp ích cho các em trong quá trình ôn tập, chuẩn bị kiến thức. Trích dẫn đề thi thử Toán THPTQG 2020 lần 1 trường THPT Hoàng Lê Kha – Thanh Hóa : + Cho một tấm nhôm hình vuông cạnh 1 m như hình vẽ dưới đây. Người ta cắt phần tô đậm của tấm nhôm rồi gấp thành một hình chóp tứ giác đều có cạnh đáy bằng x m, sao cho bốn đỉnh của hình vuông gập thành đỉnh của hình chóp. Tìm x để khối chóp nhận được có thể tích lớn nhất. + Ông An muốn xây một cái bể chứa nước lớn dạng khối hộp chữ nhật không nắp với thể tích 288 m3. Đáy bể là hình chữ nhật có chiều dài gấp đôi chiều rộng, giá thuê nhân công để xây bể là 500000 đồng/m2. Nếu ông An biết xác định các kích thước của bể hợp lí thì chi phí thuê nhân công sẽ thấp nhất. Hỏi ông An trả chi phí thấp nhất để xây dựng bể đó là bao nhiêu? [ads] + Trong một hình tứ diện ta tô màu các đỉnh, trung điểm các cạnh, trọng tâm các mặt và trọng tâm tứ diện. Chọn ngẫu nhiên 4 điểm trong số các điểm đã tô màu, tính xác suất để 4 điểm được chọn là bốn đỉnh của một tứ diện. + Cho hàm số y = x^4 – 4x^2 + 3. Mệnh đề nào sau đây sai? A. Hàm số đã cho là hàm số chẵn. B. Hàm số chỉ có một điểm cực trị. C. Đồ thị của hàm số nhận trục tung làm trục đối xứng. D. Các điểm cực trị của đồ thị hàm số tạo thành một tam giác cân. + Cho hàm số y = (x + 1)/(x – 2). Số các giá trị của tham số m để đường thẳng y = x + m luôn cắt đồ thị hàm số tại hai điểm phân biệt A và B sao cho trọng tâm tam giác OAB nằm trên đường tròn x^2 + y^2 – 3y = 4.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử Toán TN THPT 2022 lần 3 trường THPT Trần Quốc Tuấn - Quảng Ngãi
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT môn Toán lần 3 năm học 2021 – 2022 trường THPT Trần Quốc Tuấn, tỉnh Quảng Ngãi; đề thi có đáp án mã đề 001 002 003 004 005 006 007 008. Trích dẫn đề thi thử Toán TN THPT 2022 lần 3 trường THPT Trần Quốc Tuấn – Quảng Ngãi : + Cho đồ thị hàm số bậc bốn y f x và parabol y g x như hình vẽ. Biết A B là hai giao điểm và C D lần lượt là các điểm cực đại của đồ thị hàm số y f x và y g x thỏa mãn AB 5 CD 2. Gọi 1 2 3 S S S là diện tích các hình phẳng được tô đậm và 1 25 8 S. Giá trị 2 3 10 3 S S bằng? + Trong không gian Oxyz cho điểm A 2 1 3 đường thẳng 2 5 3 1 2 2 x y z và mặt cầu 2 2 2 S x y z 1 1 25. Mặt phẳng thay đổi luôn đi qua A và song song với. Trong trường hợp cắt mặt cầu S theo một đường tròn có chu vi nhỏ nhất thì có phương trình ax by cz 9 0. Tính giá trị của biểu thức S a b c. + Cho hàm số y f x có đồ thị gồm 2 nhánh parabol hợp lại như hình vẽ. Có bao nhiêu giá trị nguyên của tham số m để hàm số 2 3 3 5 x m y f x có 4 điểm cực trị?
Đề thi thử Toán TN THPT 2022 lần 2 trường THPT Nguyễn Gia Thiều - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử môn Toán ôn thi tốt nghiệp THPT năm học 2021 – 2022 lần 2 trường THPT Nguyễn Gia Thiều, thành phố Hà Nội (mã đề 275). Trích dẫn đề thi thử Toán TN THPT 2022 lần 2 trường THPT Nguyễn Gia Thiều – Hà Nội : + Trong không gian Oxyz, cho biết có hai mặt cầu có tâm nằm trên đường thẳng 1 2 2 1 1 x y z d tiếp xúc đồng thời với hai mặt phẳng 2 2 1 0 x y z và 2 3 6 2 0 x y z. Gọi R1 và R2 (R R 1 2) là bán kính của hai mặt cầu đó. Tỉ số 1 2 R R bằng? + Cho hình chóp S ABCD có đáy ABCD là hình bình hành có diện tích bằng 2 12a; khoảng cách từ S tới mặt phẳng ABCD bằng 4a. Gọi N là trọng tâm tam giác ACD; gọi G và T lần lượt là trung điểm các cạnh SB và SC. Mặt phẳng NGT chia khối chóp thành hai khối đa diện. Thể tích của khối đa diện chứa đỉnh S bằng? + Cho hàm số y f x có đạo hàm liên tục trên và có đồ thị hàm số y f x như hình vẽ bên. Biết f b 0 hỏi đồ thị hàm số y f x cắt trục hoành tại nhiều nhất bao nhiêu điểm?
Đề thi thử tốt nghiệp THPT 2022 môn Toán trường THPT Trấn Biên - Đồng Nai
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp đề thi thử tốt nghiệp THPT 2022 môn Toán trường THPT Trấn Biên – Đồng Nai (mã đề GỐC); đề thi có đáp án và lời giải chi tiết; kỳ thi được diễn ra vào thứ Hai ngày 06 tháng 06 năm 2022. Trích dẫn đề thi thử tốt nghiệp THPT 2022 môn Toán trường THPT Trấn Biên – Đồng Nai : + Trong không gian Oxyz, cho mặt cầu 2 22 Sx y z 1 2 3 27. Gọi (α) là mặt phẳng đi qua hai điểm A(0;0;-4), B(2;0;0) và cắt (S) theo giao tuyến là đường tròn (C) sao cho khối nón đỉnh là tâm của (S) và đáy là đường tròn (C) có thể tích lớn nhất. Biết rằng (α) 0 ax by z c khi đó abc bằng? + Một trang trại đang dùng hai bể nước hình trụ có cùng chiều cao; bán kính đáy lần lượt bằng 1,6m và 1,8 m. Trang trại làm một bể nước mới hình trụ, có cùng chiều cao và thể tích bằng tổng thể tích của hai bể nước trên; biết ba hình trụ trên là phần chứa nước của mỗi bể. Bán kính đáy của bể nước mới gần nhất với kết quả nào dưới đây? + Trong khuôn viên một trường đại học có 5000 sinh viên, một sinh viên vừa trở về sau kì nghỉ và bị nhiễm virus cúm truyền nhiễm kéo dài. Sau đó lây lan cho các sinh viên của trường và sự lây lan này được mô hình hóa bởi công thức 0 8 5000 1 4999e t y ∀ t 0. Trong đó y là tổng số học sinh bị nhiễm sau t ngày. Các trường đại học sẽ cho các lớp học nghỉ khi có nhiều hơn hoặc bằng 40% số sinh viên bị lây nhiễm. Sau ít nhất bao nhiêu ngày thì trường cho các lớp nghỉ học?
Đề thi thử THPT Quốc gia 2022 môn Toán lần 4 trường Lương Thế Vinh - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT Quốc gia năm học 2021 – 2022 môn Toán lần 4 trường THCS & THPT Lương Thế Vinh, thành phố Hà Nội (mã đề 101). Trích dẫn đề thi thử THPT Quốc gia 2022 môn Toán lần 4 trường Lương Thế Vinh – Hà Nội : + Cho hàm số y f x liên tục trên R và có bảng biến thiên như sau: x 1 0 1 y 0 0 0 y 3 2 1. Gọi S là tập các giá trị nguyên của tham số m để bất phương trình 2 2 2 4 6 1 9 5 4 2 f x f x f x f x f x m m nghiệm đúng với mọi x. Tính tổng các phần tử của S. + Cho hình chóp đều S ABCD có cạnh đáy bằng 4a cạnh bên bằng 2 3a và O là tâm của đáy. Gọi M N P và Q lần lượt là hình chiếu vuông góc của O trên các mặt phẳng SAB SBC SCD và SDA. Thể tích của khối chóp O MNPQ bằng? + Cho hai hàm số 4 3 2 y x x x x y x x x m x 6 5 11 6 2 3 có đồ thị lần lượt là C C 1 2. Có bao nhiêu giá trị nguyên m thuộc đoạn [-2022;2022] để C1 cắt C2 tại 4 điểm phân biệt? A. 2022. B. 2023. C. 4044. D. 2021.