Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các chuyên đề tổng ôn kỳ thi THPT Quốc gia môn Toán Phạm Hoàng Đăng

Nội dung Các chuyên đề tổng ôn kỳ thi THPT Quốc gia môn Toán Phạm Hoàng Đăng Bản PDF - Nội dung bài viết Các chuyên đề tổng ôn kỳ thi THPT Quốc gia môn Toán Phạm Hoàng ĐăngMục lục tài liệu Các chuyên đề tổng ôn kỳ thi THPT Quốc gia môn Toán Phạm Hoàng Đăng Tài liệu này được biên soạn bởi thầy giáo Phạm Hoàng Đăng và bao gồm 63 trang. Được tạo ra để giúp học sinh tổng ôn và vận dụng các chuyên đề cao cấp trong kỳ thi tốt nghiệp THPT quốc gia môn Toán. Mục tiêu của tài liệu là giúp học sinh chinh phục mức điểm cao từ 8 đến 10 trong đề thi. Mục lục tài liệu Chuyên đề 1. KHẢO SÁT HÀM SỐ A. Tìm tham số để hàm số đơn điệu trên K. Ví dụ, bài tập và đáp án. B. Giá trị lớn nhất, nhỏ nhất của hàm hợp. Ví dụ, bài tập và đáp án. C. Đơn điệu và cực trị của hàm số hợp. Bài tập mẫu, tương tự và đáp án. Chuyên đề 2. Phương trình mũ và lôgarít A. Dạng phương trình cô lập tham số. Ví dụ, bài tập và đáp án. B. Bài toán sử dụng hàm đặc trưng. Ví dụ, bài tập và đáp án. Chuyên đề 3. NGUYÊN HÀM - TÍCH PHÂN A. Tích phân hàm số cho bởi nhiều công thức. Ví dụ, bài tập và đáp án. B. Tích phân kết hợp bằng cách đổi biến & từng phần. Ví dụ, bài tập và đáp án. C. Tích phân hàm ẩn. Ví dụ, bài tập và đáp án. D. Diện tích hình phẳng và thể tích vật thể tròn xoay. Ví dụ, bài tập và đáp án. Chuyên đề 4. SỐ PHỨC A. Xác định các thuộc tính của số phức. Ví dụ, bài tập và đáp án. B. Cực trị của biểu thức chứa mô-đun số phức. Ví dụ, bài tập và đáp án. Chuyên đề 5. HÌNH HỌC KHÔNG GIAN A. Góc giữa đường thẳng và mặt phẳng. Ví dụ, bài tập và đáp án. B. Thể tích có chứa dữ liệu góc. Ví dụ, bài tập và đáp án. C. Khoảng cách từ điểm đến mặt phẳng. Ví dụ, bài tập và đáp án. D. Khoảng cách giữa hai đường thẳng chéo nhau. Ví dụ, bài tập và đáp án. E. Góc giữa hai mặt phẳng. Ví dụ, bài tập và đáp án. F. Thể tích khối đa diện liên quan góc, khoảng cách. Ví dụ, bài tập và đáp án. G. Bài toán cực trị (thực tế) trong nón trụ cầu. Ví dụ, bài tập và đáp án. Chuyên đề 6. PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN A. Phương trình mặt phẳng, đường thẳng. Ví dụ, bài tập và đáp án. B. Cực trị hình học Oxyz. Ví dụ, bài tập và đáp án.

Nguồn: sytu.vn

Đọc Sách

Công phá đề thi THPT QG môn Toán bằng kỹ thuật Casio Lâm Hữu Minh
Nội dung Công phá đề thi THPT QG môn Toán bằng kỹ thuật Casio Lâm Hữu Minh Bản PDF - Nội dung bài viết Công phá đề thi THPT QG môn Toán bằng kỹ thuật Casio Lâm Hữu Minh Công phá đề thi THPT QG môn Toán bằng kỹ thuật Casio Lâm Hữu Minh Tài liệu "Kỹ thuật CASIO luyện thi THPT Quốc gia" do tác giả Lâm Hữu Minh biên soạn gồm 122 trang hướng dẫn sử dụng Casio để giải các dạng toán trong đề thi THPT Quốc gia. Kỹ thuật CASIO được áp dụng một cách sáng tạo và khác biệt so với cách dùng máy tính thông thường. Các phương pháp sử dụng máy tính Casio trong tài liệu này không chỉ giúp người học nhanh chóng và hiệu quả khi giải các bài toán mà còn phát triển sự linh hoạt, sáng tạo và tăng tốc độ xử lý vấn đề. Kỹ thuật CASIO hướng đến mục tiêu luyện cho người học sự dẻo tay, nhanh nhạy khi sử dụng máy tính Casio để giải toán. Đồng thời, tài liệu cũng cung cấp những phương pháp bấm máy hiệu quả, tránh những thao tác không cần thiết và giúp tối ưu hóa quá trình giải toán. Tuy đề thi ngày càng đòi hỏi tư duy và suy luận cao, nhưng việc học Kỹ thuật CASIO sẽ giúp người học vững chắc trong việc sử dụng máy tính Casio trong kỳ thi THPT Quốc gia. Việc thành thạo Kỹ thuật CASIO kết hợp với vốn kiến thức Toán học sẽ tạo nên sự tự tin và khả năng giải quyết vấn đề hiệu quả cho người học khi tham gia kỳ thi. Không chỉ giúp cải thiện kỹ năng sử dụng máy tính Casio mà còn khuyến khích sự sáng tạo và nghiên cứu trong việc giải các bài toán. Từ đó, người học có thể mở rộng và áp dụng Kỹ thuật CASIO vào các môn học khác.
Kiến thức và kinh nghiệm làm bài qua các kì thi Đại học môn Toán
Nội dung Kiến thức và kinh nghiệm làm bài qua các kì thi Đại học môn Toán Bản PDF - Nội dung bài viết Tài liệu "Kiến thức và kinh nghiệm làm bài qua các kì thi Đại học môn Toán" Tài liệu "Kiến thức và kinh nghiệm làm bài qua các kì thi Đại học môn Toán" Tác giả Nguyễn Phú Khánh, Võ Bá Quốc Cẩn và Trần Quốc Anh đã tạo ra một tài liệu đầy ý nghĩa và hữu ích dành cho những ai đang chuẩn bị cho kỳ thi Đại học môn Toán. Tài liệu này được scan từ sách gốc, có tổng cộng 271 trang, chứa đựng những kiến thức quý báu và kinh nghiệm thực tiễn trong việc giải các bài toán trong đề thi quốc gia hiện nay. Bằng việc nghiên cứu tài liệu này, bạn đọc sẽ được hướng dẫn cách trình bày bài toán một cách logic và hiệu quả, từ đó nâng cao khả năng làm bài thi của mình. Tác giả hy vọng rằng tài liệu sẽ giúp ích cho các thí sinh trong quá trình ôn tập và tự tin hơn khi đối diện với các bài toán khó khăn trong kỳ thi Đại học môn Toán.