Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT Hải Dương

Nội dung Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT Hải Dương Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT môn Toán năm 2022 - 2023 sở GD ĐT Hải Dương Đề thi tuyển sinh THPT môn Toán năm 2022 - 2023 sở GD ĐT Hải Dương Xin chào đến với Sytu, nơi chúng tôi muốn giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Hải Dương. Kỳ thi dự kiến diễn ra vào thứ Ba ngày 07 tháng 06 năm 2022. Chúng tôi hy vọng rằng đề thi sẽ giúp các em học sinh chuẩn bị tốt nhất cho kỳ thi sắp tới, cung cấp cho họ cơ hội để thể hiện kiến thức và kỹ năng của mình trong môn Toán. Đề thi này được thiết kế để đánh giá sâu hơn và không chỉ kiểm tra kiến thức cơ bản mà còn khuyến khích sự sáng tạo, tư duy logic và khả năng giải quyet vấn đề của học sinh. Hãy cùng chúng tôi chia sẻ niềm đam mê và hứng thú với Toán, nhằm giúp các em học sinh phát triển toàn diện và tự tin trước thách thức của kỳ thi tuyển sinh sắp tới. Chúng tôi hy vọng rằng đề thi này sẽ là bước đệm quan trọng cho sự thành công của các em trong hành trình học tập và phát triển cá nhân. Chúc các em ôn tập hiệu quả và đạt kết quả tốt trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề thi thử Toán vào lớp 10 năm 2023 - 2024 trường THCS Trung Đô - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2023 – 2024 trường THCS Trung Đô, thành phố Vinh, tỉnh Nghệ An; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào lớp 10 năm 2023 – 2024 trường THCS Trung Đô – Nghệ An : + Kết thúc năm học 2022 – 2023 học sinh hai lớp 9A và 9B của một trường THCS tặng lại thư viện trường 494 quyển sách gồm hai loại sách giáo khoa và sách tham khảo. Trong đó, mỗi học sinh lớp 9A tặng 4 quyển sách giáo khoa và 1 quyển sách tham khảo, mỗi học sinh lớp 9B tặng 5 quyển sách giáo khoa và 2 quyển sách tham khảo. Biết số sách giáo khoa nhiều hơn số sách tham khảo là 246 quyển. Tính số học sinh của mỗi lớp? + Bác Nam muốn đúc một cống nước hình trụ, không có đáy, cao 1,1m; thành cống dày 8cm và đường kính vành ngoài của cống là 1,2m. Thể tích bê tông cần dùng để đúc cống là bao nhiêu 3 m? (Bỏ qua hao phí, làm tròn kết quả đến hai chữ số ở phần thập phân và lấy π = 3,14). + Cho đường tròn (O) đường kính AB = 2R. Lấy điểm I thuộc đoạn thẳng AB sao cho IA < IB, kẻ dây MN vuông góc với đường kính AB tại I. Trên đoạn MI lấy điểm E (E khác M, I). Tia AE cắt đường tròn tại điểm thứ hai là K. a. Chứng minh tứ giác IEKB nội tiếp. b. Chứng minh (AE.AK + BI.BA) không phụ thuộc vào vị trí điểm I. c. Xác định vị trí của điểm I sao cho chu vi tam giác MIO đạt giá trị lớn nhất?
Đề thi vào 10 môn Toán (chuyên) năm 2023 - 2024 trường chuyên Lam Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (dùng cho thí sinh thi vào lớp chuyên Toán) năm học 2023 – 2024 trường THPT chuyên Lam Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 27 tháng 05 năm 2023. Trích dẫn Đề thi vào 10 môn Toán (chuyên) năm 2023 – 2024 trường chuyên Lam Sơn – Thanh Hóa : + Xác định số nguyên dương n lớn nhất sao cho với mọi số nguyên tố p > 7 thì p6 − 1 chia hết cho n. + Cho tam giác nhọn ABC (AB < AC) có các đường cao AD, BE, CF đồng quy tại điểm H. Gọi K là trung điểm của đoạn thẳng AH. 1. Chứng minh tứ giác DEKF nội tiếp đường tròn, gọi đường tròn đó là (S). 2. Gọi P, Q lần lượt là trung điểm của các đoạn thẳng EF, BC. Chứng minh AD là tiếp tuyến của đường tròn ngoại tiếp tam giác HPQ. 3. Gọi M, N lần lượt là giao điểm của (S) với các đoạn thẳng BH, CH. Tiếp tuyến tại D của đường tròn (S) cắt MN tại T. Gọi X, Y là các giao điểm của đường tròn (S) với đường tròn ngoại tiếp tam giác BHC. Chứng minh các điểm T, X, Y thẳng hàng. + Cho tập hợp X = {1; 2; …; 120} gồm 120 số nguyên dương đầu tiên, trong đó có 60 số được viết bằng màu đỏ và 60 số còn lại được viết bằng màu xanh. Chứng minh rằng tồn tại 40 số nguyên dương liên tiếp của tập X, trong đó có 20 số được viết bằng màu đỏ và 20 số được viết bằng màu xanh.
Đề thi vào 10 chuyên môn Toán (chung - XH) năm 2023 - 2024 sở GDĐT Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chính thức tuyển sinh vào lớp 10 trường THPT chuyên môn Toán (đề chung – dành cho học sinh thi vào các lớp chuyên xã hội) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Nam Định.
Đề thi vào 10 chuyên môn Toán (chung - TN) năm 2023 - 2024 sở GDĐT Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chính thức tuyển sinh vào lớp 10 trường THPT chuyên môn Toán (đề chung – dành cho học sinh thi vào các lớp chuyên tự nhiên) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Nam Định.