Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh vào môn Toán năm 2022 2023 sở GD ĐT Trà Vinh

Nội dung Đề tuyển sinh vào môn Toán năm 2022 2023 sở GD ĐT Trà Vinh Bản PDF - Nội dung bài viết Đề tuyển sinh vào môn Toán năm 2022 2023 sở GD ĐT Trà Vinh Đề tuyển sinh vào môn Toán năm 2022 2023 sở GD ĐT Trà Vinh Chào mừng quý thầy cô và các em học sinh lớp 9! Sytu xin giới thiệu đến các bạn đề thi chính thức cho kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2022 – 2023 của sở Giáo dục và Đào tạo tỉnh Trà Vinh. Đề thi bao gồm hai phần: phần chung dành cho tất cả thí sinh (07 điểm) và phần tự chọn (03 điểm), thời gian làm bài là 120 phút (không tính thời gian giao đề). Dưới đây là một số câu hỏi trích dẫn từ đề thi: 1. Sân vận động Quốc gia Mỹ Đình (Quận Nam Từ Liêm – Hà Nội) có một sân bóng đá hình chữ nhật, chiều dài lớn hơn chiều rộng 37m và diện tích là 7140m2. Hãy tính chiều dài và chiều rộng của sân bóng đá này. 2. Một máy giặt và một tivi có tổng giá là 28,690,000 đồng. Sau khi giảm 10% cho máy giặt và 15% cho tivi, tổng giá của hai sản phẩm là 24,961,000 đồng. Hãy tính giá trị ban đầu của mỗi sản phẩm trước khi giảm giá. 3. Cho biểu thức B. Với giá trị nào của x thì B nhỏ nhất? Hãy tìm giá trị nhỏ nhất của biểu thức đó. Chúc các em học sinh thành công trong kỳ thi tuyển sinh và giữ gìn sức khỏe!

Nguồn: sytu.vn

Đọc Sách

Đề thi tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán trường THPT Lạc Thủy - Hòa Bình (Ban A)
Đề thi tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán trường THPT Lạc Thủy – Hòa Bình (Ban A) gồm 25 bài toán theo hình thức điền kết quả.
Đề thi tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán trường THPT chuyên Quốc học - TT Huế (chuyên Toán)
Đề thi tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán trường THPT chuyên Quốc học – TT Huế (chuyên Toán) gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Trong mặt phẳng tọa độ Oxy, cho parabol 2 (P): y = x^2, đường thẳng (d) có hệ số góc k và đi qua điểm M(0;1). Chứng minh rằng với mọi giá trị của k, (d) luôn cắt (P) tại hai điểm phân biệt A và B có hoành độ x1, x2 thỏa điều kiện /x1 – x2/ >= 2. [ads] + Cho đường tròn (O) có tâm O và hai điểm C, D trên (O) sao cho ba điểm C, O, D không thẳng hàng. Gọi Ct là tia đối của tia CD, M là điểm tùy ý trên Ct, M khác C. Qua M kẻ các tiếp tuyến MA, MB với đường tròn (O) (A và B là các tiếp điểm, B thuộc cung nhỏ CD). Gọi I là trung điểm của CD, H là giao điểm của đường thẳng MO và đường thẳng AB. a) Chứng minh tứ giác MAIB nội tiếp. b) Chứng minh đường thẳng AB luôn đi qua một điểm cố định khi M di động trên tia Ct. c) Chứng minh MD/MC = HA^2/HC^2
Đề thi tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán trường THPT chuyên Quốc học - TT Huế (chuyên Tin)
Đề thi tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán trường THPT chuyên Quốc học – TT Huế (chuyên Tin) gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho parabol 2 (P): y = 2x^2 và đường thẳng (d): y = ax + b. a) Tìm điều kiện của b sao cho với mọi số thực a, parabol (P) luôn cắt đường thẳng (d) tại hai điểm phân biệt. b) Gọi A là giao điểm của (P) và (d) có hoành độ bằng 1, B là giao điểm của (d) và trục tung. [ads] Biết rằng tam giác OAB có diện tích bằng 2, tìm a và b. + Tìm tất cả các số nguyên x, y, z không âm thỏa mãn xyz + xy  + yz + zx + x + y + z = 2017. + Bên trong hình vuông cạnh bằng 1, lấy 9 điểm phân biệt tùy ý sao cho không có bất kỳ 3 điểm nào trong chúng thẳng hàng. Chứng minh rằng tồn tại 3 điểm trong số đó tạo thành một tam giác có diện tích không vượt quá 1/8.
Đề thi tuyển sinh lớp 10 THPT công lập năm học 2017 - 2018 môn Toán sở GD và ĐT Bến Tre
Đề thi tuyển sinh lớp 10 THPT công lập năm học 2017 – 2018 môn Toán sở GD và ĐT Bến Tre gồm 4 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho phương trình x^2 – 2(m – 1)x – (2m + 1) = 0 (1) (m là tham số) a) Giải phương trình (1) với m = 2 b) Chứng minh rằng phương trình (1) luôn có hai nghiệm phân biệt với mọi m c) Tìm m để phương trình (1) luôn có hai nghiệm bằng nhau về giá trị tuyệt đối và trái dấu nhau [ads] + Trong mặt phẳng tọa độ Oxy cho parabol (P): y = – 2x^2 và đường thẳng (d): y = 2x – 4 a) Vẽ đồ thị của (P) và (d) trên cùng mặt phẳng tọa độ b) Bằng phương pháp đại số, hãy tìm tọa độ giao điểm của (P) và (d)