Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử tốt nghiệp THPT 2020 môn Toán lần 2 trường THPT Kim Liên - Hà Nội

Sáng Chủ Nhật ngày 24 tháng 05 năm 2020, trường THPT Kim Liên, quận Đống Đa, thành phố Hà Nội tổ chức kỳ thi thử tốt nghiệp THPT môn Toán năm học 2019 – 2020 lần thứ hai. Đề thi thử tốt nghiệp THPT 2020 môn Toán lần 2 trường THPT Kim Liên – Hà Nội mã đề 101, đề gồm có 06 trang với 50 câu trắc nghiệm, học sinh có 90 phút để làm bài, cấu trúc đề khá giống với đề thi minh họa tốt nghiệp THPT 2020 môn Toán do Bộ Giáo dục và Đào tạo công bố hôm 07/05/2020. Trích dẫn đề thi thử tốt nghiệp THPT 2020 môn Toán lần 2 trường THPT Kim Liên – Hà Nội : + Một số điện thoại có bảy chữ số, trong đó chữ số đầu tiên là 8. Số điện thoại này được gọi là may mắn nếu bốn chữ số đầu là chữ số chẵn phân biệt và ba chữ số còn lại là lẻ, đồng thời hai chữ số 0 và 9 không đứng liền nhau. Tính xác suất để một người khi lắp điện thoại ngẫu nhiên được số điện thoại may mắn. [ads] + Cho ba hình cầu có bán kính lần lượt là R1, R2 và R3 đôi một tiếp xúc nhau và cùng tiếp xúc với mặt phẳng (P). Các tiếp điểm của ba hình cầu với mặt phẳng (P) lập thành một tam giác có độ dài các cạnh lần lượt là 2; 3; 4. Tính tổng R1 + R2 + R3. + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Gọi I là trung điểm của đoạn AB . Khẳng định nào sau đây là sai? A. Góc giữa đường thẳng SC và mặt phẳng (ABCD) bằng 45 độ. B. Tam giác SBC là tam giác vuông. C. SI vuông góc với (ABCD). D. Khoảng cách giữa đường thẳng DC và mặt phẳng (SAB) bằng a.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử tốt nghiệp THPT 2022 môn Toán sở GDĐT Ninh Bình (lần 2)
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm học 2021 – 2022 môn Toán sở Giáo dục và Đào tạo tỉnh Ninh Bình lần thứ hai; đề thi mã đề 001 gồm 05 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút (không kể thời gian phát đề), đề thi có đáp án và lời giải chi tiết; kỳ thi được diễn ra vào thứ Bảy ngày 14 tháng 05 năm 2022. Trích dẫn đề thi thử tốt nghiệp THPT 2022 môn Toán sở GD&ĐT Ninh Bình (lần 2) : + Môn bóng đá nam tại SEA Games 31 có 10 đội tuyển tham dự, chia thành 2 bảng, mỗi bảng 5 đội. Ở vòng bảng, hai đội bất kì trong cùng một bảng sẽ gặp nhau một lần. Tính tổng số trận đấu ở vòng bảng môn bóng đá nam tại SEA Games 31? + Trong không gian Oxyz, cho hai điểm A(1; 5; 2) và B(5; 13; 10). Có bao nhiêu điểm I(a; b; c) với a, b, c là các số nguyên sao cho có mặt cầu tâm I đi qua A, B và tiếp xúc với mặt phẳng (Oxy). + Cho hàm số y = f(x) = 16×3 + ax2 + bx + c có đồ thị cắt trục hoành tại ba điểm phân biệt. Biết hàm số g(x) = [f0(x)]2 − 2f00(x)f(x) + [f000(x)]2 có 3 điểm cực trị x1 < x2 < x3 và g (x1) = 2, g (x2) = 5, g (x3) = 1. Diện tích hình phẳng giới hạn bởi đồ thị hàm số h(x) = f(x) g(x) + 1 và trục Ox bằng?
Đề thi thử TNTHPT 2022 môn Toán trường THPT chuyên Ngoại Ngữ - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm học 2021 – 2022 môn Toán trường THPT chuyên Ngoại Ngữ, Đại học Ngoại Ngữ, Đại học Quốc gia Hà Nội; kỳ thi được diễn ra vào ngày 09 tháng 05 năm 2022. Trích dẫn đề thi thử TNTHPT 2022 môn Toán trường THPT chuyên Ngoại Ngữ – Hà Nội : + Cho hàm số f(x) = 3×4 + ax3 + bx2 + cx + d (a b c d thuộc R) có ba điểm cực trị là -2; 1 và 2. Gọi y = g(x) là hàm số bậc hai có đồ thị đi qua ba điểm cực trị của đồ thị hàm số y = f(x). Diện tích hình phẳng giới hạn bởi hai đường y = f(x) và y = g(x) có giá trị thuộc khoảng? + Cho khối nón đỉnh S có bán kính đáy bằng 3a. Gọi M và N là hai điểm thuộc đường tròn đáy sao cho MN = 2a. Biết thể tích của khối nón là 2pia3, khoảng cách từ tâm của đường tròn đáy đến mặt phẳng (SMN) là? + Trong không gian Oxyz, cho mặt cầu (S): (x – 1)² + (y + 2)² + (z – 3)² = 25 và đường thẳng.Có bao nhiêu điểm M thuộc trục tung, với tung độ là số nguyên, mà từ M kẻ được đến (S) hai tiếp tuyến cùng vuông góc với delta?
Đề thi thử tốt nghiệp THPT 2022 môn Toán lần 2 trường THPT Phụ Dực - Thái Bình
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2022 môn Toán lần 2 trường THPT Phụ Dực, tỉnh Thái Bình; đề thi có đáp án mã đề 101 – 102 – 103 – 104. Trích dẫn đề thi thử tốt nghiệp THPT 2022 môn Toán lần 2 trường THPT Phụ Dực – Thái Bình : + Cho hình trụ có đường kính đáy bằng 5. Hình vuông ABCD nội tiếp hình trụ với hai điểm A B thuộc đường tròn là đáy trên và C D thuộc đường tròn đáy dưới của hình trụ và AB < 3. Biết diện tích hình chiếu của hình vuông ABCD trên mặt đáy bằng 2 (đơn vị diện tích). Tính thể tích của khối trụ đó. + Trong hệ tọa độ Oxyz cho mặt cầu 22 2 (S) x z 1 7 y. Hỏi có bao nhiêu điểm M trên (Oxy), M có tọa độ nguyên sao cho qua M kẻ được ít nhất hai tiếp tuyến vuông góc với nhau đến mặt cầu (S)? + Cho hai hàm đa thức bậc 4 và bậc 3 là y f (x) y g (x) (hình vẽ dưới đây chỉ mang tính chất minh họa). Biết rằng hai đồ thị y g (x) y f (x) tiếp xúc nhau tại điểm có hoành độ bằng 1 và cắt nhau tại 2 điểm khác có hoành độ lần lượt là -2; 0. Gọi S1, S2 lần lượt là diện tích hình phẳng giới hạn bởi hai đồ thị trên ở nửa mặt phẳng bên trái và nửa bên phải của trục tung. Khi 2 2 15 S thì?
Đề thi thử Toán TN THPT 2022 lần 1 trường Nguyễn Cảnh Chân - Nghệ An
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử môn Toán tốt nghiệp THPT năm học 2021 – 2022 lần 1 trường THPT Nguyễn Cảnh Chân, huyện Thanh Chương, tỉnh Nghệ An; đề thi mã đề 001 gồm 06 trang với 50 câu trắc nghiệm, thời gian học sinh làm bài thi thử là 90 phút (không kể thời gian giám thị phát đề), đề thi có đáp án. Trích dẫn đề thi thử Toán TN THPT 2022 lần 1 trường Nguyễn Cảnh Chân – Nghệ An : + Trong không gian Oxyz cho điểm và mặt phẳng. Biết rằng khi tham số m thay đổi thì mặt phẳng (P) luôn tiếp xúc với hai mặt cầu cố định cùng đi qua A là (S1) và (S2). Gọi M và N là hai điểm lần lượt nằm trên (S1) và (S2). Tìm GTLN của MN? + Cho hai hàm số và (m là tham số thực) có đồ thị lần lượt là (C1) và (C2). Tập hợp tất cả các giá trị của để và cắt nhau tại đúng bốn điểm phân biệt là? + Cho lăng trụ có chiều cao bằng 6 và đáy là tam giác đều cạnh bằng 4. Gọi M, N, P lần lượt là tâm của các mặt bên. Thể tích của khối đa diện lồi có các đỉnh là các điểm bằng?