Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lần 2 lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Thủ Đức TP HCM

Nội dung Đề học sinh giỏi lần 2 lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Thủ Đức TP HCM Bản PDF - Nội dung bài viết Đề học sinh giỏi lần 2 lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Thủ Đức TP HCM Đề học sinh giỏi lần 2 lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Thủ Đức TP HCM Sytu xin trân trọng giới thiệu đến quý thầy cô và các em học sinh lớp 8, đề thi chọn học sinh giỏi lần thứ 2 môn Toán lớp 8 năm học 2022 - 2023 của phòng Giáo dục và Đào tạo thành phố Thủ Đức, thành phố Hồ Chí Minh. Kỳ thi sẽ diễn ra vào ngày 18 tháng 03 năm 2023. Trích dẫn từ Đề học sinh giỏi lần 2 Toán lớp 8 năm 2022 - 2023 phòng GD&ĐT Thủ Đức - TP HCM: Cho tam giác ABC có ba góc nhọn (AB < AC) và ba đường cao AD, BE, CF cắt nhau tại H. a) Chứng minh: Tam giác BFC đồng dạng với tam giác BDA và góc BFD = góc ACB. b) Tia EF cắt đường thẳng BC tại K. Chứng minh: CD.FK = CK.FD. c) Gọi M là trung điểm của BC. Vẽ đường thẳng qua M vuông góc với HM, cắt AB, AD, AC tại P, Q, R. Chứng minh: PQ = QR. Hai địa điểm A và B cách nhau 200 km. Xe ô tô và xe máy khởi hành cùng lúc từ A và B đi ngược chiều. Mỗi xe đi với vận tốc khác nhau và gặp nhau tại điểm C cách A 120 km. Nếu xe ô tô khởi hành sau một giờ so với xe máy, hỏi chúng sẽ gặp nhau tại điểm D cách C bao nhiêu km? Biết vận tốc của xe ô tô lớn hơn 20 km/h so với xe máy. Cho tứ giác ABCD có các trung điểm M, N, P, Q lần lượt của các cạnh AB, BC, CD, DA. Điểm I nằm trong tứ giác ABCD. Tính diện tích tứ giác ABCD biết S(AIQM) = 32 (cm2), S(BMIN) = 50 (cm2) và S(DPIQ) = 20 (cm2). Nội dung đề thi trên cung cấp cho các em học sinh những bài toán thú vị và bổ ích, giúp họ rèn luyện kỹ năng giải quyết vấn đề, logic suy luận và tính toán trong môn học Toán. Chúc các em thành công trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề giao lưu HSG Toán 8 năm 2023 - 2024 phòng GDĐT Bá Thước - Thanh Hoá
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề giao lưu học sinh giỏi cấp huyện môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Bá Thước, tỉnh Thanh Hoá; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề giao lưu HSG Toán 8 năm 2023 – 2024 phòng GD&ĐT Bá Thước – Thanh Hoá : + Cho ba số nguyên x, y, z thỏa mãn 22 2 xy z 2. Chứng minh rằng 2 2 x y chia hết cho 48. + Cho ∆ABC vuông tại A có 0 ABC 75 trên cạnh AC lấy 2 điểm E và P sao cho ABE EBP PBC. Gọi I là chân đường vuông góc hạ từ C xuống đường thẳng BP, đường thẳng CI cắt BE ở F. 1. Chứng minh: ∆ECF cân. 2. Trên tia đối tia EB lấy điểm K sao cho EK = BC, tính số đo các góc của ∆BCK. 3. Gọi H là hình chiếu vuông góc của C trên BK, D là trung điểm của đoạn CH, L là hình chiếu vuông góc của H trên BD. Chứng minh KL vuông góc với LC. + Cho các số a, b, c khác 0 và đôi một khác nhau thoả mãn.
Đề giao lưu HSG Toán 8 năm 2023 - 2024 phòng GDĐT Quảng Xương - Thanh Hoá
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề giao lưu học sinh giỏi môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Quảng Xương, tỉnh Thanh Hoá; kỳ thi được diễn ra vào ngày 27 tháng 01 năm 2024. Trích dẫn Đề giao lưu HSG Toán 8 năm 2023 – 2024 phòng GD&ĐT Quảng Xương – Thanh Hoá : + Chọn ngẫu nhiên hai số nguyên dương nhỏ hơn 13. Tính xác suất để hai số được chọn là hai số nguyên tố trong đó có một số chẵn và một số lẻ. + Cho a là số nguyên dương và b là ước nguyên dương của 2a2. Chứng minh rằng: a2 + b không là số chính phương. + Cho tam giác ABC vuông cân tại A. Trên cạnh BC lấy điểm M bất kì. Kẻ ME vuông góc với AB tại E, MF vuông góc với AC tại F. Qua B kẻ đường thẳng (d1) song song với AC, qua C kẻ đường thẳng (d2) song song với AB. Gọi D là giao điểm của (d1) và (d2). 1. Chứng minh: tứ giác AEMF là hình chữ nhật và tổng EM/AC + FM/AB không phụ thuộc vào vị trí điểm M. 2. Gọi O là giao điểm của AM và EF, I là giao điểm của DE với BF. Chứng minh DE vuông góc với BF tại I và OI = OM. 3. Kí hiệu S1 là diện tích tam giác BEM; S2 là diện tích tam giác CFM. Xác định vị trí điểm M để S1, S2 lớn nhất.
Đề khảo sát HSG Toán 8 vòng 2 năm 2023 - 2024 phòng GDĐT Vũ Thư - Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát chất lượng học sinh giỏi môn Toán 8 cấp huyện vòng 2 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Vũ Thư, tỉnh Thái Bình; kỳ thi được diễn ra vào ngày 30 tháng 12 năm 2023. Trích dẫn Đề khảo sát HSG Toán 8 vòng 2 năm 2023 – 2024 phòng GD&ĐT Vũ Thư – Thái Bình : + Đa thức f(x) chia cho (x + 1) dư 2, chia cho (x – 2) dư 5, chia cho (x + 1)(x – 2) thì thương là 5x – 1 và còn dư. Tính f(4). + Cho tam giác ABC vuông tại A, kẻ phân giác trong AD (D thuộc BC), gọi M, N lần lượt là hình chiếu của D trên AB và AC. BN cắt DM tại E, CM cắt DN tại F, gọi K là giao điểm của BN và CM. a/ Tứ giác AMDN là hình gì? Vì sao? b/ Chứng minh: AB AC. c/ Chứng minh: AK vuông góc BC. + Cho tam giác ABC có AB + AC = 2BC. Gọi I là giao điểm ba đường phân giác trong, G là trọng tâm của ABC (I khác G). Chứng minh rằng IG // BC.
Đề HSG Toán 8 vòng 2 năm 2023 - 2024 trường THCS Trần Mai Ninh - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát chọn đội tuyển học sinh giỏi môn Toán 8 vòng 2 năm học 2023 – 2024 trường THCS Trần Mai Ninh, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 09 tháng 12 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề HSG Toán 8 vòng 2 năm 2023 – 2024 trường THCS Trần Mai Ninh – Thanh Hóa : + Với a, b là các số nguyên. Chứng minh rằng nếu 2 2 4a 3ab 11b chia hết cho 5 thì 4 4 a b chia hết cho 5. Tìm phần dư của phép chia đa thức P x cho (x 1 2). Biết rằng đa thức P x chia cho (x − 1) dư 7 và chia cho (x + 2) dư 1. + Cho hình vuông ABCD. Vẽ tam giác AEB đều nằm trong hình vuông. Đường thẳng AE cắt BD ở F, DE cắt FC ở K. Chứng minh rằng: a) Tam giác DFE cân. b) K là trung điểm của CF. + Cho tam giác IHK cân ở I đường cao IM. Trên tia đối của HM vẽ N sao cho H là trung điểm của MN. Vẽ MP vuông góc với IH. Gọi Q là trung điểm của IP. Chứng minh rằng: NP vuông góc với QM.