Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào lần 2 năm 2022 2023 trường Lương Thế Vinh Hà Nội

Nội dung Đề thi thử Toán vào lần 2 năm 2022 2023 trường Lương Thế Vinh Hà Nội Bản PDF - Nội dung bài viết Đề thi thử Toán vào lần 2 năm 2022-2023 trường Lương Thế Vinh Hà Nội Đề thi thử Toán vào lần 2 năm 2022-2023 trường Lương Thế Vinh Hà Nội Xin chào quý thầy cô và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến bạn đề thi thử môn Toán tuyển sinh vào lớp 10 lần 2 năm học 2022 – 2023 tại trường THCS&THPT Lương Thế Vinh, thành phố Hà Nội. Kỳ thi sẽ diễn ra vào ngày 26 tháng 03 năm 2022. Dưới đây là một số câu hỏi trong đề thi: 1. Chiều cao của một ngọn hải đăng là bao nhiêu? Biết rằng khi tia nắng mặt trời chiếu qua đỉnh của ngọn hải đăng hợp với mặt đất một góc 35° thì bóng của ngọn hải đăng trên mặt đất dài 20m (làm tròn kết quả đến chữ số thập phân thứ nhất). 2. Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Nếu giảm chiều rộng của một mảnh vườn hình chữ nhật đi 3m và tăng chiều dài thêm 8m thì diện tích mảnh vườn giảm đi 54m. Nếu tăng chiều rộng của mảnh vườn thêm 2m và giảm chiều dài đi 4m thì diện tích mảnh vườn tăng thêm 32m². Hãy tính các kích thước của mảnh vườn. 3. Cho tam giác ABC nhọn, các đường cao BM và CN cắt nhau tại H. - Chứng minh tứ giác AMHN nội tiếp một đường tròn và xác định vị trí tâm I của đường tròn đó. - Gọi D là một điểm thuộc cạnh BC (D khác B và D khác C). Đường tròn ngoại tiếp tam giác BDN và đường tròn ngoại tiếp tam giác CDM cắt nhau tại điểm thứ hai là E. Chứng minh E thuộc đường tròn ngoại tiếp tam giác AMN. - Gọi K là một điểm di động trên nửa đường tròn đường kính BC (cung chứa điểm M) và Q là chân đường vuông góc hạ từ K xuống BC. Tìm vị trí điểm K để tổng KQ + BQ đạt giá trị lớn nhất. Hy vọng rằng đề thi thử Toán này sẽ giúp các em học sinh ôn tập hiệu quả và chuẩn bị tốt cho kỳ thi sắp tới. Chúc các em đạt kết quả cao trong kỳ thi tuyển sinh sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh môn Toán (chuyên) năm 2021 2022 sở GD ĐT Bến Tre
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2021 2022 sở GD ĐT Bến Tre Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán (chuyên) năm 2021 - 2022 sở GD&ĐT Bến Tre Đề thi tuyển sinh môn Toán (chuyên) năm 2021 - 2022 sở GD&ĐT Bến Tre Sytu xin gửi đến quý thầy cô và các em học sinh đề thi tuyển sinh lớp 10 môn Toán (chuyên) năm 2021-2022 của sở GD&ĐT Bến Tre. Đề thi này bao gồm các câu hỏi đa dạng với đáp án và lời giải chi tiết để giúp các em ôn tập hiệu quả. Trích dẫn một số câu hỏi trong đề tuyển sinh: + Cho tam giác ABC vuông tại A với (AB AC) có đường cao AH. Biết BC = 1dm và 12 dm 25 AH. Hãy tính độ dài hai cạnh AB và AC. Kẻ HD // AB; HE // AC (với D // AB, E // AC). Gọi I là trung điểm của BC. Chứng minh IA // DE. + Cho tam giác ABC có đường phân giác ngoài của góc A cắt đường thẳng BC tại điểm D. Gọi M là trung điểm của BC. Đường tròn ngoại tiếp ADM cắt các đường thẳng AB, AC lần lượt tại E và F (với E, F khác A). Gọi N là trung điểm của EF. Chứng minh rằng MN // AD. + Cho phương trình: 2x m + 3 - 4m^2 + 4 = 0, với m là tham số. Tìm m sao cho phương trình có hai nghiệm phân biệt x1 và x2 thỏa 1/x1 + 1/x2 = 20. Đề thi tuyển sinh này sẽ giúp các em học sinh rèn luyện kỹ năng và kiến thức toán học, để chuẩn bị tốt nhất cho kỳ thi sắp tới. File WORD đã được chuẩn bị sẵn để quý thầy cô tham khảo.
Đề tuyển sinh chuyên môn Toán năm 2021 2022 sở GD ĐT Hải Phòng
Nội dung Đề tuyển sinh chuyên môn Toán năm 2021 2022 sở GD ĐT Hải Phòng Bản PDF - Nội dung bài viết Đề tuyển sinh chuyên môn Toán năm 2021-2022 sở GD&ĐT Hải Phòng Đề tuyển sinh chuyên môn Toán năm 2021-2022 sở GD&ĐT Hải Phòng Sytu xin gửi đến quý thầy cô và các em học sinh đề tuyển sinh lớp 10 chuyên môn Toán năm 2021-2022 sở GD&ĐT Hải Phòng. Đề thi bao gồm các câu hỏi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm theo bảng chính thức được công bố bởi sở Giáo dục và Đào tạo thành phố Hải Phòng. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán năm 2021-2022 sở GD&ĐT Hải Phòng: 1. **Phương trình (ẩn x; tham số a b)** - Tìm các cặp số thực (a;b) sao cho cả hai phương trình đều có hai nghiệm phân biệt thỏa mãn: - Phương trình (1): a 0 x² + b 1 x + 1 = 0 - Phương trình (2): a 0 x² - b 1 x + 21 = 0 2. **Tam giác ABC** - ABC là tam giác nhọn, nội tiếp đường tròn (O). I là tâm đường tròn bàng tiếp trong góc BAC. - Gọi D là giao điểm của AI và BC, E là giao điểm của AD và đường tròn (O). a) Chứng minh E là tâm đường tròn ngoại tiếp tam giác IBC. b) Kẻ H là hình chiếu của I trên BC. EH cắt đường tròn (O) tại F. Chứng minh AF ⊥ FI. c) Đường thẳng FD cắt đường tròn (O) tại M (F M), IM cắt đường tròn (O) tại N (N M). Đường thẳng qua O và song song với FI cắt AI tại J, đường thẳng qua J và song song với AH cắt IH tại P. Chứng minh ba điểm N, E, P thẳng hàng. 3. **Tập hợp X = {1;2;3...;101}** - Tìm số tự nhiên n (n ≥ 3) nhỏ nhất sao cho đối với mọi tập con A gồm n phần tử của X, luôn tồn tại 3 phần tử đôi một phân biệt a, b, c sao cho a+b=c.
Đề tuyển sinh chuyên môn Toán (chuyên) năm 2021 2022 sở GD ĐT Hà Nam
Nội dung Đề tuyển sinh chuyên môn Toán (chuyên) năm 2021 2022 sở GD ĐT Hà Nam Bản PDF Đề tuyển sinh chuyên môn Toán (chuyên) năm 2021-2022 sở GD&ĐT Hà NamSytu xin gửi đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021-2022 từ sở GD&ĐT Hà Nam. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm theo bảng chính thức do sở Giáo dục và Đào tạo tỉnh Hà Nam công bố.Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021-2022 sở GD&ĐT Hà Nam:- Cho đường tròn O đường kính AB R=2. Gọi ∆ là tiếp tuyến của O tại A. Trên ∆ lấy điểm M sao cho MA R. Qua M vẽ tiếp tuyến MC (C thuộc đường tròn O, C khác A). Gọi H và D lần lượt là hình chiếu vuông góc của C trên AB và AM. Gọi d là đường thẳng đi qua điểm O và vuông góc với AB. Gọi N là giao điểm của d và BC.1. Chứng minh OM // BN và MC = NO.2. Gọi Q là giao điểm của MB và CH, K là giao điểm của AC và OM. Chứng minh đường thẳng QK đi qua trung điểm của đoạn thẳng BC.3. Gọi F là giao điểm của QK và AM, E là giao điểm CD và OM. Chứng minh tứ giác FEQO là hình bình hành. Khi M thay đổi trên ∆, tìm giá trị lớn nhất của QF EO.- Giải phương trình 3xy+2xz=3 2021 với x, y và z là các số nguyên.- Cho hình vuông ABCD có độ dài cạnh bằng 1. Bên trong hình vuông người ta lấy tùy ý 2021 điểm phân biệt A1, A2, A3,... sao cho 2025 điểm A1A2A3... không có ba điểm nào thẳng hàng. Chứng minh rằng từ 2025 điểm trên luôn tồn tại 3 điểm là 3 đỉnh của hình tam giác có diện tích không quá 1.File WORD (dành cho quý thầy, cô): Download here Hy vọng đề tuyển sinh này sẽ giúp các em học sinh chuẩn bị tốt cho kỳ thi và đạt kết quả cao. Chúc quý thầy, cô và các em thành công!
Đề tuyển sinh môn Toán (chuyên) năm 2021 2022 sở GD ĐT Đồng Nai
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2021 2022 sở GD ĐT Đồng Nai Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2021-2022 sở GD&ĐT Đồng Nai Đề tuyển sinh môn Toán (chuyên) năm 2021-2022 sở GD&ĐT Đồng Nai Sytu xin gửi đến các thầy cô giáo và các em học sinh đề tuyển sinh lớp 10 môn Toán (chuyên) năm học 2021-2022 của sở GD&ĐT Đồng Nai. Đề thi này bao gồm đáp án và lời giải chi tiết để giúp các em ôn tập hiệu quả hơn. Trích đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2021-2022 sở GD&ĐT Đồng Nai: + Trong năm 2021, có bao nhiêu số nguyên dương đầu tiên không chia hết cho 7 và không chia hết cho 11? + Tìm đa thức bậc ba P(x) = ax^3 + bx^2 + cx + 3 với a, b, c là các hệ số thực. Biết P(x) chia hết cho (x - 1) và khi chia P(x) cho (x – 2) và (x – 3) đều có số dư là 6. + Tìm các số nguyên x và y thỏa mãn bất đẳng thức. Bạn hãy tự tin và tư duy logic để giải quyết các bài toán trong đề thi. Chúc các em học sinh thành công!