Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG tỉnh lớp 12 môn Toán năm 2019 2020 sở GD ĐT Lâm Đồng

Nội dung Đề thi HSG tỉnh lớp 12 môn Toán năm 2019 2020 sở GD ĐT Lâm Đồng Bản PDF Thứ Sáu ngày 20 tháng 12 năm 2019, sở Giáo dục và Đào tạo tỉnh Lâm Đồng tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh lớp 12 môn Toán năm học 2019 – 2020. Đề thi HSG tỉnh Toán lớp 12 năm 2019 – 2020 sở GD&ĐT Lâm Đồng gồm 06 bài toán chung cho tất cả các thí sinh và 02 bài toán riêng cho thí sinh hệ THPT và hệ GDTX, đề thi gồm có 02 trang, thời gian làm bài 90 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi HSG tỉnh Toán lớp 12 năm 2019 – 2020 sở GD&ĐT Lâm Đồng : + Một chiếc cốc hình trụ có bán kính đáy bằng 5cm và chiều cao 20cm bên trong có một khối lập phương cạnh 6cm như hình minh họa. Khi đổ nước vào cốc, khối lập phương sẽ nổi 1/3 thể tích của nó lên trên mặt nước (mặt trên khối lập phương song song với mặt nước). Tính thể tích lượng nước đổ vào cốc để mặt trên của khối lập phương ngang bằng với miệng cốc khi nó nổi lên (lấy π = 3,14). [ads] + Học sinh A thiết kể bảng điều khiển điện tử mở cửa phòng học của lớp mình. Bảng gồm 15 nút, mỗi nút được ghi một số từ 1 đến 15 và không có hai nút nào được ghi cùng một số. Để mở cửa cần nhấn ba nút khác nhau sao cho tổng các số trên ba nút đó là số chẵn. Học sinh B không biết quy tắc mở cửa trên, đã nhấn ngẫu nhiên ba nút khác nhau trên bảng điều khiển. Tính xác suất để B mở được cửa phòng học đó. + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = a, AD = 2a, SA vuông góc với mặt đáy, SB tạo với mặt đáy một góc 60°, điểm E thuộc cạnh SA và AE = a√3/3. Mặt phẳng (BCE) cắt SD tại F. Tính thể tích khối đa diện V_ABCDEF và khoảng cách giữa hai đường thẳng SD và BE.

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn học sinh giỏi cấp tỉnh môn Toán 12 THPT học 2017 - 2018 sở GD và ĐT Thừa Thiên Huế
Đề thi chọn học sinh giỏi cấp tỉnh môn Toán 12 THPT học 2017 – 2018 sở GD và ĐT Thừa Thiên Huế gồm 6 bài toán tự luận, thời gian làm bài 180 phút, đề thi có lời giải chi tiết .
Đề thi thử HSG Toán 12 THPT năm học 2017 - 2018 trường THPT Bình Xuyên - Vĩnh Phúc
Đề thi thử HSG Toán 12 THPT năm học 2017 – 2018 trường THPT Bình Xuyên – Vĩnh Phúc gồm 1 trang với 6 bài toán tự luận, thời gian làm bài 180 phút, đề thi có lời giải chi tiết và thang điểm. Trích dẫn đề thi : + Trong mặt phẳng với hệ trục tọa độ vuông góc Oxy, cho đường tròn (C) và đường thẳng (d) lần lượt có phương trình (x – 2)^2 + (y + 1)^2 = 8 và x – 2y + 3 = 0. Cho hình thoi ABCD ngoại tiếp đường tròn (C) và điểm A thuộc đường thẳng (d). Hãy tìm tọa độ các đỉnh A, B, C, D biết rằng BD = 2AC và tung độ của điểm A không nhỏ hơn 2. [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình vuông và tam giác SAB là tam giác cân tại đỉnh S. Góc giữa đường thẳng SAvà mặt phẳng đáy bằng 45 độ, góc giữa mặt phẳng (SAB) và mặt phẳng đáy bằng 60 độ. Tính thể tích khối chóp S.ABCD biết rằng khoảng cách giữa hai đường thẳng CD và SA bằng a√6. + Cho hàm số y = (x – 2)/(x – 1) có đồ thị (C). Hãy lập phương trình đường thẳng (d) đi qua điểm M (3; -1) và cắt đồ thị (C) tại hai điểm phân biệt A, B sao cho MB = 3.MA.
Đề thi chọn học sinh giỏi vòng trường môn Toán trường THPT Chu Văn An - Gia Lai
Đề thi chọn học sinh giỏi vòng trường môn Toán trường THPT Chu Văn An – Gia Lai gồm 6 bài toán tự luận, thời gian làm bài 180 phút, đề thi có lời giải chi tiết . Trích dẫn đề thi : + Trong mặt phẳng với hệ tọa độ Oxy cho tam giác ABC cân tại A, có đỉnh A(-1; 4) và các điểm B, C thuộc đường thẳng Δ: x – y – 4 = 0. Xác định tọa độ điểm B và C, biết diện tích tam giác ABC bằng 18. [ads] + Cho hình chóp S.ABCD, đáy ABCD là hình chữ nhật có AB = a, BC = b, SA = SB = SC = SD = c. K là hình chiếu vuông góc của P xuống AC. a/ Tính độ dài đoạn vuông góc chung của SA và BK. b/ Gọi M, N lần lượt là trung điểm của đoạn thẳng AK và CD. Chứng minh: Các đường thẳng BM và MN vuông góc nhau. + Cho tập A = {1; 2; 3; 4; 5; 6; 7; 8; 9}. Lập ngẫu nhiên một số có 3 chữ số khác nhau với các chữ số chọn từ tập A. Tính xác suất để số lập được chia hết cho 6.
Đề thi chọn HSG tỉnh Toán 12 năm học 2017 - 2018 sở GD và ĐT Hải Dương
Đề thi chọn HSG tỉnh Toán 12 năm học 2017 – 2018 sở GD và ĐT Hải Dương gồm 5 bài toán tự luận, thời gian làm bài 180 phút, đề thi có lời giải chi tiết . Trích dẫn đề thi : + Môn bóng đá nam SEA GAME có 10 đội bóng tham dự trong đó có Việt Nam và Thái Lan. Chia 10 đội bóng này thành 2 bảng A, B. Mỗi bảng có 5 đội. Tính xác suất sao cho Việt Nam và Thái Lan ở cùng một bảng. [ads] + Cho tứ diện ABCD có AB = CD = c, AC = BD = b, AD = BC = a. a. Tính góc giữa hai đường thẳng AB, CD b. Chứng minh rằng trọng tâm của tứ diện ABCD cách đều tất cả các mặt của tứ diện + Cho hình chóp S.ABCD có SA = x, tất cả các cạnh còn lại có độ dài bằng 1. Tính thể tích khối chóp đó theo x và tìm x để thể tích đó là lớn nhất.