Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề giữa học kì 2 Toán 11 năm 2023 - 2024 trường THPT Văn Giang - Hưng Yên

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề kiểm tra giữa học kì 2 môn Toán 11 năm học 2023 – 2024 trường THPT Văn Giang, tỉnh Hưng Yên. Đề thi được biên soạn theo cấu trúc trắc nghiệm mới nhất, với nội dung gồm 03 phần: Câu trắc nghiệm nhiều phương án lựa chọn; Câu trắc nghiệm đúng sai; Câu trắc nghiệm trả lời ngắn. Đề thi có đáp án và hướng dẫn chấm điểm mã đề 901 902 903 904 905 906. Trích dẫn Đề giữa học kì 2 Toán 11 năm 2023 – 2024 trường THPT Văn Giang – Hưng Yên : + Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án. Một chiếc hộp chứa 9 quả cầu gồm 4 quả màu xanh, 3 quả màu đỏ và 2 quả màu vàng. Lấy ngẫu nhiên 3 quả cầu từ hộp đó. Xác suất để trong 3 quả cầu lấy được có ít nhất 1 quả màu đỏ bằng? + Một lớp 12 có hai tổ, mỗi tổ có 16 học sinh. Trong kì tốt nghiệp trung học học phổ thông năm 2023, tổ 1 có 10 bạn đăng kí thi tổ hợp tự nhiên, 6 bạn đăng kí thi tổ hợp xã hội. Tổ 2 có 9 bạn đăng kí thi tổ hợp xã hội, 7 bạn đăng kí thi tổ hợp tự nhiên. Chọn ngẫu nhiên ở mỗi tổ một bạn. a) Số phần tử của không gian mẫu là 256. b) Xác suất để cả hai bạn được chọn đều đăng kí cùng tổ hợp dự thi tốt nghiệp là 31 64. c) Số cách chọn hai bạn cùng đăng kí tổ hợp tự nhiên là 54 cách. d) Số cách chọn hai bạn cùng đăng kí tổ hợp xã hội là 70 cách. + Thang đo Richte được Charles Francis đề xuất và sử dụng lần đầu tiên vào năm 1935 để sắp xếp các số đo độ chấn động của các cơn động đất với đơn vị Richte. Công thức tính độ chấn động như sau: M log A log A L 0 ML là độ chấn động, A là biên độ tối đa được đo bằng địa chấn kế và A0 là biên độ chuẩn. Hỏi theo thang độ Richte, cùng với một biên độ chuẩn thì biên độ tối đa của một trận động đất 8 độ Richte sẽ lớn gấp bao nhiêu lần biên độ tối đa của một trận động đất 5 độ Richte?

Nguồn: toanmath.com

Đọc Sách

Đề thi giữa kì 2 Toán 11 năm 2020 - 2021 trường THPT Lê Trọng Tấn - TP HCM
Đề thi giữa kì 2 Toán 11 năm học 2020 – 2021 trường THPT Lê Trọng Tấn, quận Tân Phú, thành phố Hồ Chí Minh gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 60 phút. Trích dẫn đề thi giữa kì 2 Toán 11 năm 2020 – 2021 trường THPT Lê Trọng Tấn – TP HCM : + Chứng minh rằng phương trình sau luôn có nghiệm với mọi giá trị tham số m. + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = a2, BC = a5. SA vuông góc (ABCD), SA = a. a) Chứng minh: BC vuông góc (SAB). b) Xác định và tính góc giữa đường thẳng SD và mặt phẳng (ABCD). + Tìm số hạng đầu u1 và công bội q của cấp số nhân.
Đề thi giữa kì 2 Toán 11 năm 2020 - 2021 trường Phan Đình Phùng - Hà Nội
Ngày … tháng 03 năm 2021, trường THPT Phan Đình Phùng, quận Ba Đình, thành phố Hà Nội tổ chức kiểm tra khảo sát chất lượng môn Toán lớp 11 giai đoạn giữa học kì 2 năm học 2020 – 2021. Đề thi giữa kì 2 Toán 11 năm 2020 – 2021 trường Phan Đình Phùng – Hà Nội mã đề 123 gồm 03 trang, đề được biên soạn theo hình thức trắc nghiệm khách quan kết hợp với tự luận, phần trắc nghiệm gồm 20 câu, chiếm 05 điểm, phần tự luận gồm 04 câu, chiếm 05 điểm, thời gian làm bài 60 phút (không kể thời gian giao đề), đề thi có đáp án và lời giải chi tiết mã đề 123, 246, 357, 479. Trích dẫn đề thi giữa kì 2 Toán 11 năm 2020 – 2021 trường Phan Đình Phùng – Hà Nội : + Cho dãy số 1; 2; 3; -4; 5; 7; 8; 9; 110. Khẳng định nào sau đây đúng? A. Dãy tăng và bị chặn. B. Dãy không bị chặn. C. Dãy giảm và bị chặn. D. Dãy số không tăng, không giảm. + Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O và SA ⊥ (ABCD). a) Chứng minh: BD ⊥ (SAC). b) Gọi AH là đường cao của ∆SAB. Chứng minh rằng AH ⊥ BC. c) Xác định giao điểm K của SC với mặt phẳng (ADH). Chứng minh rằng tứ giác ADKH là hình thang vuông. + Cho hình hộp ABCD.EFGH. Khẳng định nào sau đây đúng? A. Ba véctơ EH, EF và AC đồng phẳng. B. Ba véctơ EH, EA và EF đồng phẳng. C. Ba véctơ GH, GF và BG đồng phẳng. D. Ba véctơ EH, EF và AG đồng phẳng.
Đề thi giữa kỳ 2 Toán 11 năm 2020 - 2021 trường Lương Ngọc Quyến - Thái Nguyên
Đề thi giữa kỳ 2 Toán 11 năm 2020 – 2021 trường Lương Ngọc Quyến – Thái Nguyên được biên soạn theo dạng đề trắc nghiệm khách quan kết hợp với tự luận, phần trắc nghiệm gồm 30 câu, chiếm 06 điểm, phần tự luận gồm 04 câu, chiếm 04 điểm, thời gian làm bài 90 phút, đề thi có đáp án trắc nghiệm và lời giải chi tiết tự luận. Trích dẫn đề thi giữa kỳ 2 Toán 11 năm 2020 – 2021 trường Lương Ngọc Quyến – Thái Nguyên : + Đầu mùa thu hoạch xoài, một bác nông dân đã bán cho người thứ nhất nửa số xoài thu hoạch được và cho thêm một quả (không tính tiền), bán cho người thứ hai nửa số xoài còn lại và cho thêm một quả (không tính tiền), bán cho người thứ ba nửa số xoài còn lại và cho thêm một quả (không tính tiền) … Đến lượt người thứ bảy bác cũng bán nửa số xoài còn lại và cho thêm một quả (không tính tiền) thì không còn quả nào nữa. Hỏi bác nông dân đã thu hoạch được bao nhiêu quả xoài đầu mùa? + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N, H, K lần lượt là trung điểm của AB, CD, SB, SC. a) Chứng minh rằng MN song song với HK. b) Chứng minh rằng mặt phẳng (MNK) song song với mặt phẳng (SAD). c) Gọi I và J lần lượt là trọng tâm các tam giác ABD, tam giác SBC. Chứng minh rằng IJ song song với mặt phẳng (SAB). + Cho hai đường thẳng a, b phân biệt cùng song song với một mặt phẳng. Khi đó: A. chưa kết luận được vị trí tương đối của a và b. B. a và b chéo nhau. C. a và b cắt nhau. D. a và b song song với nhau.
Đề thi giữa kỳ 2 Toán 11 năm 2020 - 2021 trường THPT Hồng Quang - Yên Bái
Đề thi giữa kỳ 2 Toán 11 năm 2020 – 2021 trường THPT Hồng Quang – Yên Bái mã đề 001 gồm 03 trang với 35 câu trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn đề thi giữa kỳ 2 Toán 11 năm 2020 – 2021 trường THPT Hồng Quang – Yên Bái : + Tập hợp các điểm M cách đều hai điểm A và B trong không gian là tập hợp nào sau? A. Mặt phẳng trung trực của AB. B. Một đường thẳng song song với AB. C. Đường trung trực của AB. D. Một mặt phẳng vuông góc với AB tại A. + Cho tứ diện S.ABC có tam giác ABC vuông tại B và SA vuông góc với mặt phẳng (ABC). Gọi AH là đường cao của tam giác SAB. Trong các mệnh đề sau,  mệnh đề nào sai? + Cho hai đường thẳng a và b lần lượt có VTCP. Mệnh đề nào dưới đây đúng?