Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL Toán 12 lần 1 ôn thi THPTQG 2019 - 2020 trường Đội Cấn - Vĩnh Phúc

Tháng 12 năm 2019, trường THPT Đội Cấn, tỉnh Vĩnh Phúc tổ chức kỳ thi kiểm tra chất lượng môn Toán lần thứ nhất đối với học sinh khối lớp 12 năm học 2019 – 2020, kỳ thi nằm trong kế hoạch chuẩn bị lâu dài cho kỳ thi THPT Quốc gia môn Toán. Đề KSCL Toán 12 lần 1 ôn thi THPTQG 2019 – 2020 trường Đội Cấn – Vĩnh Phúc bao gồm 8 mã đề: 132, 209, 357, 485, 570, 628, 743, 896, đề gồm 6 trang với 50 câu trắc nghiệm thuộc chương trình Toán 10, Toán 11 và Toán 12, trong đó Toán 12 chiếm phần lớn, học sinh làm bài trong 90 phút, đề thi có đáp án đầy đủ các mã đề. Trích dẫn đề KSCL Toán 12 lần 1 ôn thi THPTQG 2019 – 2020 trường Đội Cấn – Vĩnh Phúc : + Ông An muốn xây một bể chứa nước dạng hình hộp chữ nhật, phần nắp trên ông để trống một ô có diện tích bằng 20% diện tích của đáy bể. Biết đáy bể là một hình chữ nhật có chiều dài gấp đôi chiều rộng, bể có thể chứa được tối đa 10m3 nước và giá tiền thuê nhân công là 500000 đồng/m2. Hỏi số tiền mà ông phải trả gần nhất với số nào sau đây? + Một công ty thực hiện việc trả lương cho các công nhân theo phương thức sau: Mức lương của quý làm việc đầu tiên cho công ty là 13,5 triệu đồng/quý, và kể từ quý làm việc thứ hai, mức lương sẽ được tăng thêm 500.000 đồng mỗi quý. Tính tổng số tiền lương một công nhân nhận được sau ba năm làm việc cho công ty. [ads] + Một vật chuyển động theo quy luật s = -2t^3 + 24t^2 + 9t – 3 với t (giây) là khoảng thời gian tính từ lúc bắt đầu chuyển động và s(mét) là quãng đường vật đi được trong khoảng thời gian đó. Hỏi trong khoảng thời gian 10 giây, kể từ lúc bắt đầu chuyển động, vận tốc lớn nhất của vật đạt được bằng bao nhiêu? + Gọi S là tập hợp tất cả các số có 5 chữ số. Chọn ngẫu nhiên một số từ tập S. Tính xác suất để chọn được một số mà chữ số đứng sau không nhỏ hơn chữ số đứng trước nó (tính theo thứ tự từ trái sang phải). + Cho khối chóp S.ABCD có đáy ABCD là hình bình hành và có thể tích bằng V. Gọi M, N, P lần lượt là các điểm trên các cạnh SA, SC, SB sao cho SM = 2MA, SN = 3NC, SP = 4BP. Mặt phẳng (MNP) chia khối chóp đã cho thành hai phần, thể tích của phần có thể tích nhỏ hơn bằng?

Nguồn: toanmath.com

Đọc Sách

Đề KSCL Toán 12 thi tốt nghiệp THPT 2022 lần 2 trường THPT chuyên Vĩnh Phúc
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng môn Toán 12 ôn thi tốt nghiệp THPT năm 2022 lần 2 trường THPT chuyên Vĩnh Phúc, tỉnh Vĩnh Phúc; đề thi có đáp án mã đề 109. Trích dẫn đề KSCL Toán 12 thi tốt nghiệp THPT 2022 lần 2 trường THPT chuyên Vĩnh Phúc : + Trong không gian Oxyz cho mặt cầu 2 2 2 S x y z x y z 2 4 6 13 0 và đường thẳng 1 4 1 2 2 1 x y z d. Tọa độ điểm M trên đường thẳng d sao cho từ M kẻ được 3 tiếp tuyến MA MB MC đến mặt cầu S (A B C là các tiếp điểm) thỏa mãn AMB 60 BMC 90 CMA 120 có dạng M a b c với c 0. Tính tổng a b c. + Cho hình trụ có đáy là hai đường tròn tâm O và O đường kính đáy bằng chiều cao và bằng 2a. Trên đường tròn đáy có tâm O lấy điểm A trên đường tròn tâm O lấy điểm B. Đặt là góc giữa AB và đáy. Biết rằng thể tích khối tứ diện OO AB đạt giá trị lớn nhất. Khẳng định nào sau đây đúng? + Cho y f x là hàm đa thức bậc 4 và có đồ thị như hình vẽ. Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn 12 12 để hàm số g x f x m 2 1 có 5 điểm cực trị?
Đề KSCL lần 3 Toán 12 năm 2021 - 2022 trường THPT Nguyễn Viết Xuân - Vĩnh Phúc
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi khảo sát chất lượng lần 3 môn Toán 12 năm học 2021 – 2022 trường THPT Nguyễn Viết Xuân, tỉnh Vĩnh Phúc. Trích dẫn đề KSCL lần 3 Toán 12 năm 2021 – 2022 trường THPT Nguyễn Viết Xuân – Vĩnh Phúc : + Trong không gian với hệ trục tọa độ Oxyz gọi P là mặt phẳng đi qua điểm H 1 2 5 và cắt các trục Ox Oy Oz lần lượt tại A B C (khác gốc tọa độ O) sao cho H là trực tâm tam giác ABC. Biết mặt phẳng P có phương trình ax by cz 30 0. Tính tổng T a b c. + Trong không gian Oxyz, cho điểm A 1 1 3 và 2 đường thẳng 1 4 2 1 1 4 2 x y z d 2 2 1 1 1 1 1 x y z d. Đường thẳng d đi qua A cắt 2 d và vuông góc với 1 d. Mặt phẳng P đi qua gốc tọa độ và chứa đường thẳng d. Biết mặt phẳng P có một véc tơ pháp tuyến là n a b 1. Biểu thức a b 1 bằng? + Cho hình trụ có chiều cao bằng 4a. Biết rằng khi cắt hình trụ đã cho bởi một mặt phẳng song song với trục và cách trục một khoảng bằng 3a, thiết diện thu được là một hình vuông. Thể tích của khối trụ đã cho bằng?
Đề KSCL Toán 12 thi tốt nghiệp THPT 2022 lần 1 trường THPT chuyên Vĩnh Phúc
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng môn Toán 12 ôn thi tốt nghiệp THPT năm 2022 lần 1 trường THPT chuyên Vĩnh Phúc, tỉnh Vĩnh Phúc. Trích dẫn đề KSCL Toán 12 thi tốt nghiệp THPT 2022 lần 1 trường THPT chuyên Vĩnh Phúc : + Gọi 1z 2 z là hai số phức thỏa mãn đồng thời hai điều kiện 2 5 1 5 z i z mi z m 2 với m là số thực tùy ý. Gọi A B lần lượt là điểm biểu diễn hình học của 1z 2 z. Gọi S là tập các giá trị của m để diện tích tam giác ABI là lớn nhất với I 1 1. Tổng bình phương các phần tử của S bằng? + Trong không gian Oxyz cho hai điểm A B 1 2 3 3 4 5 và mặt phẳng Px y z 2 3 14 0. Gọi là một đường thẳng thay đổi nằm trong mặt phẳng P. Gọi H K lần lượt là hình chiếu vuông góc của A B trên. Biết rằng khi AH BK thì trung điểm của HK luôn thuộc một đường thẳng d cố định, phương trình của đường thẳng d là? + Cho đường thẳng y x a (a là tham số thực dương) và đồ thị hàm số y x. Gọi 1 2 S S lần lượt là diện tích hai hình phẳng được gạch chéo trong hình vẽ bên. Khi 1 2 5 3 S S thì a thuộc khoảng nào dưới đây?
Đề KSCL Toán thi TN THPT 2022 lần 2 trường chuyên Lam Sơn - Thanh Hóa
Chủ Nhật ngày 03 tháng 04 năm 2022, trường THPT chuyên Lam Sơn, tỉnh Thanh Hóa tổ chức kỳ thi khảo sát chất lượng các môn thi tốt nghiệp Trung học Phổ thông năm học 2021 – 2022 lần thứ hai. Đề KSCL Toán thi TN THPT 2022 lần 2 trường chuyên Lam Sơn – Thanh Hóa mã đề 101 gồm có 06 trang với 50 câu trắc nghiệm, thời gian học sinh làm bài thi là 90 phút (không kể thời gian phát đề), đề thi có đáp án và lời giải chi tiết: Mã đề 101 Mã đề 102 Mã đề 103 Mã đề 104 Mã đề 105 Mã đề 106. Trích dẫn đề KSCL Toán thi TN THPT 2022 lần 2 trường chuyên Lam Sơn – Thanh Hóa : + Một cái bình thủy tinh có phần không gian bên trong là một hình nón có đỉnh hướng xuống dưới theo chiều thẳng đứng. Rót nước vào bình cho đến khi phần không gian trống trong bình có chiều cao 2 cm. Sau đó đậy kín miệng bình bởi một cái nắp phẳng và lật ngược bình để đỉnh hướng lên trên theo chiều thẳng đứng, khi đó mực nước cao cách đỉnh của nón 8 cm (hình vẽ minh họa bên dưới). Biết chiều cao của nón là h a b cm. Tính T a b. + Khi nuôi tôm trong một hồ tự nhiên, một nhà khoa học đã thống kê được rằng: nếu trên mỗi mét vuông mặt hồ thả x con tôm giống thì cuối vụ mỗi con tôm có cân nặng trung bình là 2 108 x (gam). Hỏi nên thả bao nhiêu con tôm giống trên mỗi mét vuông mặt hồ tự nhiên đó để cuối vụ thu hoạch được nhiều tôm nhất. + Một em bé có bộ 7 thẻ chữ, trên mỗi thẻ có ghi một chữ cái, trong đó có 2 thẻ chữ T giống nhau, một thẻ chữ H, một thẻ chữ P, một thẻ chữ C, một thẻ chữ L và một thẻ chữ S. Em bé xếp theo hàng ngang ngẫu nhiên 7 thẻ đó. Xác suất em bé xếp được dãy theo thứ tự THPTCLS là? + Cho hình chóp S ABC có đáy là tam giác đều cạnh bằng a, tam giác SAB cân tại S và thuộc mặt phẳng vuông góc với mặt phẳng ABC, góc giữa hai mặt phẳng SCA và SCB bằng 0 60. Gọi H là trung điểm của đoạn AB. Trong các mệnh đề sau, mệnh đề nào đúng: A. Không tồn tại hình chóp đã cho. B. Thể tích khối chóp S AHC bằng 3 2 64 a. C. Thể tích khối chóp B SHC bằng 3 2 16 a. D. Thể tích khối chóp S ABC bằng 3 2 16 a. + Cho hàm số f x với đồ thị là Parabol đỉnh I có tung độ bằng 7 12 và hàm số bậc ba g x. Đồ thị hai hàm số đó cắt nhau tại ba điểm phân biệt có hoành độ 1 2 3 x x x thoả mãn 1 2 3 18 55 x x x (hình vẽ). Diện tích miền tô đậm gần số nào nhất trong các số sau đây?