Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi Toán 9 năm 2022 - 2023 phòng GDĐT thành phố Thái Nguyên

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND thành phố Thái Nguyên, tỉnh Thái Nguyên; đề thi hình thức tự luận với 05 bài toán, thời gian làm bài 150 phút. Trích dẫn đề thi học sinh giỏi Toán 9 năm 2022 – 2023 phòng GD&ĐT thành phố Thái Nguyên : + Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = (m – 2)x + 3 (m khác 2). Tìm tất cả các giá trị của tham số m để đường thẳng (d) cắt Ox tại điểm A, cắt Oy tại điểm B sao cho ABO = 30 độ. + Cho nửa đường tròn tâm O, đường kính AB, điểm M di động trên nửa đường tròn đó (M khác A, M khác B). Gọi điểm H là hình chiếu vuông góc của điểm M trên đường thẳng AB. Vẽ đường tròn đường kính AH, đường tròn đường kính BH. Đường thẳng MA cắt đường tròn đường kính AH tại điểm E (E khác A). Đường thẳng MB cắt đường tròn đường kính BH tại điểm F (F khác B). a. Chứng minh ME.MA = MF.MB. b. Gọi K, G lần lượt là hai điểm đối xứng của điểm H qua các đường thẳng MA, MB. Chứng minh ba điểm M, K, G thẳng hàng. c. Chứng minh MH3 = AB.AE.BF. d. Gọi I, J lần lượt là tâm của đường tròn đường kính AH và BH. Cho AB = 2R. Xác định vị trí của điểm M để diện tích tứ giác IEFJ đạt giá trị lớn nhất. Tính giá trị đó theo R. + Cho số tự nhiên n bất kỳ. Tìm tất cả các số nguyên tố p sao cho số A = 2026n2 + 1014(n + p) luôn viết được dưới dạng hiệu của hai số chính phương.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi lớp 9 môn Toán năm 2023 2024 trường THCS Đặng Thai Mai Nghệ An
Nội dung Đề học sinh giỏi lớp 9 môn Toán năm 2023 2024 trường THCS Đặng Thai Mai Nghệ An Bản PDF - Nội dung bài viết Đề học sinh giỏi Toán lớp 9 năm 2023 – 2024 trường THCS Đặng Thai Mai – Nghệ An Đề học sinh giỏi Toán lớp 9 năm 2023 – 2024 trường THCS Đặng Thai Mai – Nghệ An Xin chào quý thầy cô và các em học sinh lớp 9! Đây là bộ đề kiểm tra học sinh giỏi môn Toán lớp 9 năm học 2023 – 2024 tại trường THCS Đặng Thai Mai, thành phố Vinh, tỉnh Nghệ An. Bộ đề này bao gồm các câu hỏi đa dạng và phong phú, đồng thời cung cấp đáp án và hướng dẫn chấm điểm chi tiết. Dưới đây là một số câu hỏi trong đề thi: Cho hai số nguyên dương \(a\), \(b\) thỏa mãn \(a > b\) và \(a^2 + b^2 + 1 = 2(ab + a + b)\). Chứng minh \(a\), \(b\) là hai số chính phương liên tiếp. Cho tam giác nhọn \(ABC\) có đường cao \(AH\). Gọi \(E\), \(F\) lần lượt là các điểm thuộc các tia \(HC\), \(HB\) sao cho \(EAB = FAC = 90^\circ\). Hãy chứng minh những điều đề ra trong phần b của câu hỏi này. Cho năm số nguyên dương đôi một phân biệt sao cho mỗi số trong chúng không có ước nguyên tố nào khác 2 và 3. Chứng minh rằng trong năm số đó tồn tại hai số mà tích của chúng là một số chính phương. Đề thi này không chỉ giúp học sinh rèn luyện kỹ năng giải các bài toán phức tạp mà còn khuyến khích họ phát huy sự sáng tạo và logic trong việc giải quyết vấn đề. Chúc quý thầy cô và các em học sinh có kỳ thi thành công!
Đề học sinh giỏi lớp 9 môn Toán năm 2023 2024 phòng GD ĐT Thạch Thất Hà Nội
Nội dung Đề học sinh giỏi lớp 9 môn Toán năm 2023 2024 phòng GD ĐT Thạch Thất Hà Nội Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 9 năm 2023 - 2024 phòng GD&ĐT Thạch Thất - Hà Nội Đề thi học sinh giỏi Toán lớp 9 năm 2023 - 2024 phòng GD&ĐT Thạch Thất - Hà Nội Chào đón quý thầy cô giáo và các em học sinh lớp 9! Sytu xin giới thiệu đến bạn đề thi chọn học sinh giỏi môn Toán lớp 9 THCS cấp huyện năm học 2023 - 2024 của phòng Giáo dục và Đào tạo UBND huyện Thạch Thất, thành phố Hà Nội. Đề thi bao gồm đáp án và hướng dẫn chấm điểm chi tiết. Trích dẫn một số câu hỏi từ Đề học sinh giỏi Toán lớp 9 năm 2023 - 2024 phòng GD&ĐT Thạch Thất - Hà Nội: Cho điểm M di động trên đoạn thẳng AB sao cho M AB. Trên cùng một nửa mặt phẳng bờ AB có các hình vuông AMCD, BMEF. Giao điểm của hai đường chéo của mỗi hình vuông lần lượt là O, O'. Hãy chứng minh rằng AE BC. Gọi I là giao điểm của AC và BE. Chứng minh rằng I là trung điểm của đoạn thẳng DF và ba điểm H, D, F thẳng hàng. Cho tam giác đều ABC, điểm M nằm trong tam giác sao cho AM2 = BM2 + CM2. Hỏi số đo góc BMC là bao nhiêu? Đề thi này sẽ giúp các em ôn tập và nắm vững kiến thức để chuẩn bị tốt cho kỳ thi học sinh giỏi. Hãy tập trung và cố gắng hết mình để đạt kết quả tốt nhất! Hãy tham khảo và thực hành đề thi này để nắm vững kiến thức Toán lớp 9. Chúc các em thành công!
Đề chọn HSG huyện lớp 9 môn Toán năm 2023 2024 phòng GD ĐT Tân Sơn Phú Thọ
Nội dung Đề chọn HSG huyện lớp 9 môn Toán năm 2023 2024 phòng GD ĐT Tân Sơn Phú Thọ Bản PDF - Nội dung bài viết Đề chọn HSG huyện lớp 9 môn Toán năm 2023 2024 phòng GD ĐT Tân Sơn Phú Thọ Đề chọn HSG huyện lớp 9 môn Toán năm 2023 2024 phòng GD ĐT Tân Sơn Phú Thọ Phòng Giáo dục và Đào tạo Tân Sơn Phú Thọ sẽ tổ chức kì thi chọn Học sinh giỏi (HSG) môn Toán cho học sinh lớp 9 trên địa bàn huyện. Đề thi sẽ được xây dựng dựa trên chương trình Toán chính thức của Bộ Giáo dục và Đào tạo. Kì thi nhằm đánh giá năng lực và kiến thức Toán của học sinh, từ đó tìm ra những tài năng tiềm năng để đại diện cho huyện tham gia các kỳ thi quốc gia sau này.
Đề khảo sát HSG lớp 9 môn Toán lần 2 năm 2023 2024 phòng GD ĐT Tam Kỳ Quảng Nam
Nội dung Đề khảo sát HSG lớp 9 môn Toán lần 2 năm 2023 2024 phòng GD ĐT Tam Kỳ Quảng Nam Bản PDF - Nội dung bài viết Đề khảo sát HSG lớp 9 môn Toán lần 2 năm 2023 2024 phòng GD ĐT Tam Kỳ Quảng Nam Đề khảo sát HSG lớp 9 môn Toán lần 2 năm 2023 2024 phòng GD ĐT Tam Kỳ Quảng Nam Sytu trân trọng giới thiệu đến quý thầy cô giáo và các em học sinh lớp 9 đề khảo sát học sinh giỏi môn Toán lớp 9 lần 2 năm học 2023 – 2024 của phòng Giáo dục và Đào tạo thành phố Tam Kỳ, tỉnh Quảng Nam. Kỳ thi sẽ diễn ra vào ngày 02 tháng 11 năm 2023, là cơ hội để các em học sinh thể hiện tài năng và năng khiếu trong môn Toán, đồng thời khẳng định khả năng của mình. Chúc các em học sinh thành công và giành được những kết quả xuất sắc trong kỳ thi sắp tới!