Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra học kì 1 (HK1) lớp 9 môn Toán năm 2021 2022 trường TH THCS Ngôi Sao Hà Nội

Nội dung Đề kiểm tra học kì 1 (HK1) lớp 9 môn Toán năm 2021 2022 trường TH THCS Ngôi Sao Hà Nội Bản PDF - Nội dung bài viết Đề kiểm tra học kì 1 Toán lớp 9 năm 2021 - 2022 trường TH&THCS Ngôi Sao Hà Nội Đề kiểm tra học kì 1 Toán lớp 9 năm 2021 - 2022 trường TH&THCS Ngôi Sao Hà Nội Đề kiểm tra học kì 1 Toán lớp 9 năm 2021 - 2022 trường TH&THCS Ngôi Sao Hà Nội bao gồm 5 bài toán dạng tự luận trên 1 trang, thời gian làm bài 90 phút. Kỳ thi sẽ diễn ra vào ngày ... tháng 12 năm 2021. Trích đề kiểm tra học kì 1 Toán lớp 9 năm 2021 - 2022 trường TH&THCS Ngôi Sao Hà Nội: + Cho hàm số \( y = (1 - m)x + m + 2 \) (với m là tham số) có đồ thị là đường thẳng d. Xác định m để: a) Đường thẳng d cắt trục hoành tại điểm có hoành độ bằng 2. b) Đường thẳng d song song với đường thẳng \( y = 2x - 1 \). c) Đường thẳng d cắt trục Ox, Oy lần lượt tại 2 điểm A, B sao cho tam giác AOB vuông cân. + Giá niêm yết của các chiếc tủ lạnh cùng loại trong siêu thị là như nhau. Gian hàng A giảm giá 20%, gian hàng B giảm 10% lần 1 và 10% tiếp theo nếu chưa bán được. Người mua để mua được giá rẻ hơn sẽ chọn gian hàng nào và vì sao? + Cho đường tròn (O;R) có hai đường kính AB và CD vuông góc với nhau. Điểm E thay đổi thuộc đoạn OC, nối AE cắt đường tròn (O) tại M. a) Chứng minh O, B, M, E nằm trên một đường tròn. b) Chứng minh AE.AM không phụ thuộc vào vị trí của điểm E trên đoạn OC. c) Xác định vị trí của E trên đoạn OC để MA = 2MB. d) Xác định vị trí điểm E trên đoạn OC để chu vi tam giác MAB đạt giá trị lớn nhất.

Nguồn: sytu.vn

Đọc Sách

Đề thi HK1 Toán 9 năm 2019 - 2020 phòng GDĐT Nam Từ Liêm - Hà Nội
Thứ Sáu ngày 06 tháng 12 năm 2019, phòng Giáo dục và Đào tạo UBND quận Nam Từ Liêm, thành phố Hà Nội tổ chức kỳ thi học kỳ 1 môn Toán lớp 9 năm học 2019 – 2020, nhằm kiểm tra chất lượng Toán 9 của học sinh đang theo học tại các trường Trung học Cơ sở trên địa bàn quận Nam Từ Liêm, Hà Nội. Đề thi HK1 Toán 9 năm 2019 – 2020 phòng GD&ĐT Nam Từ Liêm – Hà Nội gồm có 05 bài toán dạng tự luận, học sinh có 90 phút để hoàn thành bài thi học kỳ. Trích dẫn đề thi HK1 Toán 9 năm 2019 – 2020 phòng GD&ĐT Nam Từ Liêm – Hà Nội : + Một con thuyền ở địa điểm D di chuyển từ bờ sông a sang bờ sông b với vận tốc trung bình là 2 km/h, vượt qua khúc sông chảy mạnh trong 20 phút. Biết đường đi con thuyền là DE tạo với bờ sông một góc bằng 60 độ. Tính chiều rộng khúc sông. + Lấy điểm A trên (O;R), vẽ tiếp tuyến Ax. Trên Ax lấy điểm B, trên (O;R) lấy điểm C sao cho BC = AB. a) Chứng minh rằng CB là tiếp tuyến của (O). b) Vẽ đường kính AD của (O), kẻ CK ⊥ AD. Chứng minh rằng CD // OB và BC.DC = CK.OB. c) Lấy M trên cung nhỏ AC của (O), vẽ tiếp tuyến tại M cắt AB, AC lần lượt tại E, F. Vẽ đường tròn tâm I nội tiếp tam giác BFE. Chứng minh rằng: ∆MAC đồng dạng ∆IFE.
Đề thi HK1 Toán 9 năm 2018 - 2019 phòng GDĐT Thị Xã Phú Mỹ - Bà Rịa - Vũng Tàu
THCS. giới thiệu đến toàn thể các em học sinh khối lớp 9 đề thi HK1 Toán 9 năm 2018 – 2019 phòng GD&ĐT Thị Xã Phú Mỹ – Bà Rịa – Vũng Tàu, đề được biên soạn theo hình thức tự luận, gồm 1 trang với 5 bài toán, thời gian làm bài dành cho học sinh là 90 phút, kỳ thi nhằm đánh giá lại tất cả những kiến thức Toán 9 học sinh đã được truyền đạt trong giai đoạn học kỳ 1 vừa qua của năm học 2018 – 2019, đề thi có lời giải chi tiết và thang chấm điểm. Trích dẫn đề thi HK1 Toán 9 năm 2018 – 2019 phòng GD&ĐT Thị Xã Phú Mỹ – Bà Rịa – Vũng Tàu : + Cho đường tròn tâm O đường kính AB và C là một điểm trên đường tròn (C khác A và B). Kẻ CH vuông góc với AB tại H. Gọi I là trung điểm của AC; OI cắt tiếp tuyến tại A của (O) tại M; MB cắt CH tại K. a) Chứng minh: OI ⊥ AC và tam giác ABC vuông tại C. b) Chứng minh MC là tiếp tuyến của (O). c) Chứng minh K là trung điểm của CH. [ads] + Cho tam giác ABC vuông tại A có đường cao AH (H ∈ BC). Tính AH, AC và sinC biết BH = 9cm, CH = 16cm. + Trong mặt phẳng tọa độ Oxy cho hai đường thẳng (d1): y = 2x + 2 và (d2): y = -1/2.x – 2. Gọi C là giao điểm của (d1), (d2). Hai đường thẳng (d1) và (d2) cắt trục Oy theo thứ tự tại D và E. a) Vẽ (d1) và (d2) trên cùng mặt phẳng tọa độ Oxy. b) Tìm tọa độ các điểm C, D, E. c) Tính diện tích tam giác CDE.
Đề thi HK1 Toán 9 năm học 2018 - 2019 phòng GDĐT Đống Đa - Hà Nội
Đề thi HK1 Toán 9 năm học 2018 – 2019 phòng GD&ĐT Đống Đa – Hà Nội gồm 5 bài toán tự luận, các dạng toán bao gồm: tính giá trị biểu thức, giải phương trình, tính – rút gọn và tìm GTLN – GTNN của biểu thức, đồ thị hàm số bậc nhất, bài toán đường tròn … học sinh có 90 phút để giải đề, đề thi có lời giải chi tiết. Trích dẫn đề thi HK1 Toán 9 năm học 2018 – 2019 phòng GD&ĐT Đống Đa – Hà Nội : + Cho x, y, z là các số dương thay đổi thỏa mãn: xy + yz + zx = 5. Tìm giá trị nhỏ nhất của biểu thức T = 3x^2 + 3y^2 + z^2. + Cho hàm số bậc nhất y = (m – 1)x – 4 (d) (m khác 1). 1) Vẽ đồ thị hàm số khi m = 2. 2) Tìm m để (d) song song với đồ thị hàm số y = -3x + 2 (d1). 3) Tìm m để (d) cắt đồ thị hàm số y = x – 7 (d2) tại một điểm nằm ở bên trái trục tung. [ads] + Cho đường tròn (O;R) đường kính AB. Vẽ tiếp tuyến Bx của (O). Trên cùng 1 nửa mặt phẳng bờ AB có chứa Bx, lấy điểm M thuộc (O) (M khác A và B) sao cho MA > MB. Tia AM cắt Bx tại C. Từ C kẻ tiếp tuyến thứ hai CD với (O) (D là tiếp điểm). 1) Chứng minh OC ⊥ BD. 2) Chứng minh bốn điểm O, B, C, D cùng thuộc một đường tròn. 3) Chứng minh góc CMD = CDA. 4) Kẻ MH vuông góc với AB tại H. Tìm vị trí của M để chu vi tam giác OMH đạt giá trị lớn nhất.
Đề thi học kỳ 1 Toán 9 năm học 2018 - 2019 phòng GD và ĐT Bình Thạnh - TP. HCM
THCS. giới thiệu đến thầy, cô và các em học sinh lớp 9 nội dung đề thi học kỳ 1 Toán 9 năm học 2018 – 2019 phòng GD và ĐT Bình Thạnh – TP. HCM, đề gồm 1 trang với 6 bài tập tự luận, học sinh làm bài trong vòng 90 phút (không tính thời gian giám thị phát đề).