Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát chất lượng học kỳ 2 Toán 9 năm 2021 - 2022 sở GDĐT Nam Định

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng học kỳ 2 môn Toán 9 năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Nam Định; đề thi gồm 08 câu trắc nghiệm (02 điểm) và 05 câu tự luận (08 điểm), thời gian học sinh làm bài thi là 120 phút; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề khảo sát chất lượng học kỳ 2 Toán 9 năm 2021 – 2022 sở GD&ĐT Nam Định : + Cho hai đường tròn O cm 6 và O cm 5 sao cho OO cm 9. Khi đó hai đường tròn A. cắt nhau. B. không có điểm chung. C. tiếp xúc ngoài nhau. D. tiếp xúc trong nhau. + Cho hình vuông ABCD có độ dài cạnh bằng 6cm. Vẽ đường tròn (O) đường kính AD và đường tròn (I) sao cho (I) tiếp xúc với (O) tại E và tiếp xúc với đường thẳng BC tại H (hình vẽ bên). Tính diện tích phần được tô đậm trong hình vẽ (kết quả làm tròn đến chữ thập phân thứ nhất). + Từ điểm A nằm ngoài đường tròn (O) vẽ hai tiếp tuyến AB, AC (B và C là các tiếp điểm). Kẻ đường kính CD của đường tròn (O), đường thẳng AD cắt đường tròn (O) tại điểm thứ hai là M. Gọi H là giao điểm của AO và BC. a) Chứng minh 0 AHC 90 và tứ giác AMHC nội tiếp đường tròn. b) Gọi N là giao điểm của BM và AO. Chứng minh rằng N là trung điểm của đoạn thẳng AH.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 2 (HK2) lớp 9 môn Toán năm học 2016 2017 sở GD và ĐT Thái Bình
Nội dung Đề thi học kì 2 (HK2) lớp 9 môn Toán năm học 2016 2017 sở GD và ĐT Thái Bình Bản PDF - Nội dung bài viết Đề thi học kì 2 (HK2) lớp 9 môn Toán năm học 2016-2017 sở GD và ĐT Thái Bình Đề thi học kì 2 (HK2) lớp 9 môn Toán năm học 2016-2017 sở GD và ĐT Thái Bình Đề thi học kì 2 môn Toán lớp 9 năm học 2016 - 2017 của sở GD và ĐT Thái Bình bao gồm 5 bài toán tự luận, mỗi bài toán đều có lời giải chi tiết. Một trong những bài toán được trích dẫn trong đề là: + Cho nửa đường tròn có đường kính BC, A là điểm thuộc nửa đường tròn sao cho AB < AC (A khác B). Trên dây cung AC lấy điểm E khác A và C; gọi D, H là hình chiếu vuông góc của A lên BC và BE. 1. Chứng minh hai góc BAD và BHD bằng nhau. 2. Chứng minh BH.CE = BC.DH. 3. Gọi K là giao điểm của DH và AC, phân giác góc CKD cắt HE, CD tại M và N; phân giác góc CBE cắt DH, CE tại P và Q. Chứng minh tam giác KPQ cân và tứ giác MPNQ là hình thoi. Đề thi này đòi hỏi kiến thức và kỹ năng phân tích, suy luận của học sinh. Bằng cách giải quyết các bài toán này, học sinh sẽ phát triển khả năng tư duy logic và sáng tạo trong việc giải quyết vấn đề. Chắc chắn rằng việc tham gia vào việc giải các bài toán trong đề thi này sẽ giúp học sinh rèn luyện kỹ năng toán học một cách hiệu quả.