Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tham khảo tuyển sinh 10 môn Toán 2024 - 2025 phòng GDĐT Bình Tân - TP HCM

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề tham khảo tuyển sinh vào lớp 10 môn Toán năm học 2024 – 2025 phòng Giáo dục và Đào tạo quận Bình Tân, thành phố Hồ Chí Minh; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề tham khảo tuyển sinh 10 môn Toán 2024 – 2025 phòng GD&ĐT Bình Tân – TP HCM : + Công ty đồ chơi Bingbon vừa cho ra đời một đồ chơi tàu điện điều khiển từ xa. Trong điều kiện phòng thí nghiệm, quãng đường s t (xen ti mét) đi được của đoàn tàu đồ chơi là một hàm số của thời gian t (giây), hàm số đó là s t 6t 9. Trong điều kiện thực tế người ta thấy rằng nếu đoàn tàu đồ chơi di chuyển quãng đường 12 cm thì mất 2 giây và cứ trong mỗi 10 giây thì nó đi được 52 cm. a) Trong điều kiện thí nghiệm, sau 5 (giây) đoàn tàu đồ chơi di chuyển được bao nhiêu mét? b) Mẹ bé An mua đồ chơi này về cho bé chơi, bé ngồi cách mẹ 2,5 mét. Hỏi cần bao nhiêu giây để đoàn tàu đồ chơi đi từ chỗ mẹ tới chỗ bé? + Bạn Vy đi làm thêm ở tiệm café “Take away NT” với hợp đồng lương tính theo ngày, nếu một ngày bán đủ 50 ly thì bạn sẽ nhận được lương cơ bản 150000 đồng, bên cạnh đó với mỗi ly bán vượt chỉ tiêu, bạn sẽ được thưởng thêm 40% so với tiền lời một ly café. Ngày đầu tiên đi làm bạn nhận được 222000 đồng. Tính số ly café bạn Vy đã bán được trong ngày đầu tiên đi làm, biết rằng tiền lời một ly café là 6000 đồng. + Trái bóng (hình cầu) Telstar xuất hiện lần đầu tiên ở World Cup 1970 ở Mexico do Adidas sản xuất có đường kính 22,3cm. Trái bóng được may từ 32 múi da đen và trắng. Các múi da màu đen hình ngũ giác đều, các múi da màu trắng hình lục giác đều. a) Biết công thức tính diện tích mặt cầu cho bởi công thức 2 S 4R π với R là bán kính hình cầu. Tính diện tích bề mặt của quả bóng Telstar. (làm tròn đến hàng đơn vị) b) Trên bề mặt trái bóng, mỗi múi da màu đen có diện tích 2 37cm. Mỗi múi da màu trắng có diện tích 2 55,9cm. Hãy tính trên trái bóng có bao nhiêu múi da màu đen và màu trắng?

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh chuyên môn Toán (chuyên) năm 2022 2023 sở GD ĐT Cà Mau
Nội dung Đề tuyển sinh chuyên môn Toán (chuyên) năm 2022 2023 sở GD ĐT Cà Mau Bản PDF - Nội dung bài viết Đề tuyển sinh chuyên môn Toán (chuyên) năm 2022 2023 sở GD ĐT Cà Mau Đề tuyển sinh chuyên môn Toán (chuyên) năm 2022 2023 sở GD ĐT Cà Mau Sytu xin chào đến quý thầy, cô giáo và các em học sinh lớp 9 với đề thi chính thức của kỳ thi tuyển sinh vào lớp 10 THPT chuyên môn Toán (chuyên) năm học 2022 – 2023 của sở Giáo dục và Đào tạo tỉnh Cà Mau, được tổ chức vào ngày 22 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2022 – 2023 sở GD&ĐT Cà Mau: - Cho Parabol (P): y = 3/2.x^2 và đường thẳng (d): y = 2mx + 1. a) Chứng minh rằng đường thẳng (d) luôn cắt Parabol (P) tại hai điểm phân biệt. b) Khi m = 1/4, vẽ Parabol (P) và đường thẳng (d) trên mặt phẳng Oxy và tìm tọa độ giao điểm của chúng. - Một xí nghiệp chế biến thủy sản dự kiến đóng 3,000 hộp tôm xuất khẩu trong một thời gian nhất định. Trong 6 ngày đầu, họ thực hiện đúng tiến độ, sau đó mỗi ngày đóng vượt 10 hộp tôm xuất khẩu, khiến họ hoàn thành sớm 1 ngày và vượt mức 60 hộp tôm xuất khẩu nữa. Hỏi theo dự kiến, mỗi ngày xí nghiệp đóng bao nhiêu hộp tôm xuất khẩu? - Cho số M (trong đó dấu căn bậc ba được viết lặp lại 2022 lần). Chứng minh rằng 2022 < M < 2023.
Đề tuyển sinh chuyên môn Toán (không chuyên) năm 2022 2023 sở GD ĐT Cà Mau
Nội dung Đề tuyển sinh chuyên môn Toán (không chuyên) năm 2022 2023 sở GD ĐT Cà Mau Bản PDF - Nội dung bài viết Đề thi tuyển sinh chuyên môn Toán (không chuyên) năm 2022 - 2023 sở GD&ĐT Cà Mau Đề thi tuyển sinh chuyên môn Toán (không chuyên) năm 2022 - 2023 sở GD&ĐT Cà Mau Xin chào quý thầy cô và các em học sinh lớp 9! Sytu xin giới thiệu đến quý vị đề thi chính thức cho kỳ thi tuyển sinh vào lớp 10 THPT chuyên môn Toán (không chuyên) năm học 2022 - 2023 của sở Giáo dục và Đào tạo tỉnh Cà Mau. Kỳ thi diễn ra vào ngày 21 tháng 06 năm 2022. Trích đề tuyển sinh lớp 10 chuyên môn Toán (không chuyên) năm 2022 - 2023 sở GD&ĐT Cà Mau: Ngày của Cha, hay còn gọi là Father's Day, là dịp để con bày tỏ lòng biết ơn và hiếu thảo đối với cha. Để tỏ lòng biết ơn này, siêu thị A đã giảm giá 18% cho mỗi đôi giày và 20% cho mỗi chiếc cà vạt. Bạn Duy đã dùng 834,700 đồng để mua một đôi giày và một chiếc cà vạt ở siêu thị A làm quà tặng cho cha. Duy đã tính nhẩm và đến kết luận rằng nếu mua vào ngày không có khuyến mãi, anh ấy sẽ không đủ tiền để mua hai món hàng này. Bạn hãy xác định xem Duy có tính đúng không? Cho phương trình: x² + kx + 2 = 0 (k là tham số). Hãy tìm giá trị của k để phương trình có nghiệm kép, và tìm nghiệm kép đó. Sau đó, tìm giá trị của k để phương trình có hai nghiệm x₁, x₂ thỏa mãn. Cho điểm A nằm ngoài đường tròn (O;R) sao cho OA = 2R. Từ đó, kết hợp với các thông tin đã cho, bài toán yêu cầu chúng ta chứng minh một số tính chất về các hình học liên quan. Hy vọng rằng đề thi và các câu hỏi trên sẽ giúp quý vị và các em học sinh lớp 9 rèn luyện kỹ năng Toán một cách hiệu quả và tự tin cho kỳ thi sắp tới. Chúc quý vị thành công!
Đề tuyển sinh vào môn Toán năm 2022 2023 sở GD ĐT Trà Vinh
Nội dung Đề tuyển sinh vào môn Toán năm 2022 2023 sở GD ĐT Trà Vinh Bản PDF - Nội dung bài viết Đề tuyển sinh vào môn Toán năm 2022 2023 sở GD ĐT Trà Vinh Đề tuyển sinh vào môn Toán năm 2022 2023 sở GD ĐT Trà Vinh Chào mừng quý thầy cô và các em học sinh lớp 9! Sytu xin giới thiệu đến các bạn đề thi chính thức cho kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2022 – 2023 của sở Giáo dục và Đào tạo tỉnh Trà Vinh. Đề thi bao gồm hai phần: phần chung dành cho tất cả thí sinh (07 điểm) và phần tự chọn (03 điểm), thời gian làm bài là 120 phút (không tính thời gian giao đề). Dưới đây là một số câu hỏi trích dẫn từ đề thi: 1. Sân vận động Quốc gia Mỹ Đình (Quận Nam Từ Liêm – Hà Nội) có một sân bóng đá hình chữ nhật, chiều dài lớn hơn chiều rộng 37m và diện tích là 7140m2. Hãy tính chiều dài và chiều rộng của sân bóng đá này. 2. Một máy giặt và một tivi có tổng giá là 28,690,000 đồng. Sau khi giảm 10% cho máy giặt và 15% cho tivi, tổng giá của hai sản phẩm là 24,961,000 đồng. Hãy tính giá trị ban đầu của mỗi sản phẩm trước khi giảm giá. 3. Cho biểu thức B. Với giá trị nào của x thì B nhỏ nhất? Hãy tìm giá trị nhỏ nhất của biểu thức đó. Chúc các em học sinh thành công trong kỳ thi tuyển sinh và giữ gìn sức khỏe!
Đề tuyển sinh môn Toán năm 2022 2023 sở GD ĐT Hoà Bình
Nội dung Đề tuyển sinh môn Toán năm 2022 2023 sở GD ĐT Hoà Bình Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán năm 2022 - 2023 sở GD ĐT Hoà Bình Đề thi tuyển sinh môn Toán năm 2022 - 2023 sở GD ĐT Hoà Bình Xin chào quý thầy cô và các em học sinh lớp 9! Hôm nay Sytu xin giới thiệu đến các bạn đề thi chính thức của kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2022 - 2023 do Sở Giáo dục và Đào tạo tỉnh Hoà Bình tổ chức. Kỳ thi sẽ diễn ra vào thứ Năm ngày 23 tháng 06 năm 2022. Dưới đây là một số câu hỏi trong đề tuyển sinh môn Toán năm 2022 - 2023 sở GD&ĐT Hoà Bình: 1. Bác Bình trồng cam trên một mảnh vườn hình chữ nhật có chiều dài hơn chiều rộng 4m, chu vi của mảnh vườn là 40m. Biết rằng cứ 3m2 bác Bình trồng được 1 cây cam, hỏi bác Bình trồng được bao nhiêu cây cam trên mảnh vườn đó? 2. Cho tam giác ABC vuông tại A có AB = 5 cm và BC = 13 cm. Hãy tính cạnh AC và đường cao AH. 3. Cho đường tròn tâm O và điểm A nằm ngoài đường tròn, từ A kẻ các tiếp tuyến AM, AN với đường tròn. Lấy điểm K thuộc cung nhỏ MN, kẻ tiếp tuyến với đường tròn O tại K cắt AM, AN theo thứ tự tại E và F. Gọi giao điểm của OE, OF với MN theo thứ tự là P và Q. a) Chứng minh rằng tứ giác AMON là tứ giác nội tiếp. b) Chứng minh rằng 1/2 * EOF = MON. c) Chứng minh rằng ME/OF = OE/MP. d) Chứng minh rằng OK, EQ, FP đồng quy. Chúc quý thầy cô và các em học sinh giải đề thi thành công! Hy vọng rằng đề thi sẽ giúp các bạn rèn luyện và nắm vững kiến thức Toán để chuẩn bị cho kỳ thi sắp tới. Cảm ơn đã đọc!