Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn học sinh giỏi Toán 9 năm 2020 - 2021 sở GDĐT thành phố Hà Nội

Sáng thứ Tư ngày 13 tháng 01 năm 2021, sở Giáo dục và Đào tạo thành phố Hà Nội tổ chức kỳ thi chọn học sinh giỏi (HSG) cấp thành phố môn Toán lớp 9 năm học 2020 – 2021. Đề chọn học sinh giỏi Toán 9 năm 2020 – 2021 sở GD&ĐT thành phố Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút. Trích dẫn đề chọn học sinh giỏi Toán 9 năm 2020 – 2021 sở GD&ĐT thành phố Hà Nội : + Với các số thực không âm a, b, c thỏa mãn a2 + b2 + c2 = 1, tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức Q = √(a + b) + √(b + c) + √(c + a). + Tìm tất cả các số nguyên dương x, y, z thỏa mãn 3^x + 2^y = 1 + 2^z. + Cho một hình chữ nhật có diện tích bằng 1. Năm điểm phân biệt được đặt tùy ý vào hình chữ nhật sao cho không có ba điểm nào thẳng hàng (mỗi điểm trong năm điểm đó có thể được đặt trên cạnh hoặc đặt nằm trong hình chữ nhật). a) Chứng minh mọi tam giác tạo bởi ba điểm trong năm điểm đã cho đều có diện tích không vượt quá 3. b) Với mỗi cách đặt năm điểm vào hình chữ nhật như trên, gọi N là số tam giác có ba đỉnh là ba điểm trong năm điểm đó và có diện tích không vượt quá 1. Tìm giá trị nhỏ nhất của N.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi huyện Toán 9 năm 2018 - 2019 phòng GDĐT Nậm Nhùn - Lai Châu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi cấp huyện môn Toán 9 năm học 2018 – 2019 phòng GD&ĐT Nậm Nhùn – Lai Châu; kỳ thi được diễn ra vào ngày 13 tháng 01 năm 2019.
Đề học sinh giỏi Toán 9 cấp trường năm 2017 - 2018 trường THCS Sông Trí - Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát đội tuyển học sinh giỏi môn Toán 9 cấp trường năm học 2017 – 2018 trường THCS Sông Trí, thị xã Kỳ Anh, tỉnh Hà Tĩnh; đề thi có lời giải chi tiết và thang chấm điểm. Trích dẫn đề học sinh giỏi Toán 9 cấp trường năm 2017 – 2018 trường THCS Sông Trí – Hà Tĩnh : + Giả sử D là một điểm nằm trong tam giác nhọn ABC sao cho 0 ADB ACB 90 và AC BD AD BC. Chứng minh rằng 2 AB CD AC BD. + Cho tam giác ABC. Biết rằng tồn tại hai điểm M N lần lượt trên các cạnh AB BC sao cho 2 BM BN AM CN và BNM ANC. Chứng minh rằng tam giác ABC vuông? + Cho tam giác ABC vuông tại A, đường cao AH, đường phân giác AD. Biết BH = 63 cm; CH = 112 cm. Tính HD.
Đề khảo sát HSG lần 1 Toán 9 năm 2017 - 2018 trường THCS Thanh Lãng - Vĩnh Phúc
Đề khảo sát HSG lần 1 Toán 9 năm 2017 – 2018 trường THCS Thanh Lãng – Vĩnh Phúc gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề khảo sát HSG lần 1 Toán 9 năm 2017 – 2018 trường THCS Thanh Lãng – Vĩnh Phúc : + Cho đa thức P(x) = ax3 + bx2 + cx + d với a, b, c, d là các hệ số nguyên. Chứng minh rằng nếu P(x) chia hết cho 5 với mọi giá trị nguyên của x thì các hệ số a, b, c, d đều chia hết cho 5. + Cho ABC nhọn, có ba đường cao AD, BI, CK cắt nhau tại H. Gọi chân các đường vuông góc hạ từ D xuống AB, AC lần lượt là E và F. a) Chứng minh rằng: AE.AB = AF.AC b) Giả sử HD = 1 3 AD. Chứng minh rằng: tanB.tanC = 3 c) Gọi M, N lần lượt là chân đường vuông góc kẻ từ D đến BI và CK. Chứng minh rằng: 4 điểm E, M, N, F thẳng hàng. + Cho a, b, c là 3 số dương thỏa mãn điều kiện 1 1 1 2 a + b + 1 b + c + 1 c + a + 1 Tìm giá trị lớn nhất của tích (a + b)(b + c)(c + a).
Đề học sinh giỏi huyện Toán 9 năm 2015 - 2016 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 9 năm 2015 – 2016 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 9 năm 2015 – 2016 phòng GD&ĐT Nho Quan – Ninh Bình : + Cho các số thực x y z thỏa mãn đồng thời các điều kiện 2 22 x y z xy yz zx và 2015 2015 2015 2016 xyz 3. Tìm x y z. + Cho x, y là hai số không âm thỏa mãn điều kiện 2 2 xy x y 1. Tính giá trị của biểu thức: 2 2 Tx y y x 1 1. + Cho đường tròn O R và đường thẳng d cố định, d không có điểm chung với đường tròn. Gọi M là điểm thuộc đường thẳng d. Qua M kẻ hai tiếp tuyến MA MB tới đường tròn (A B là các tiếp điểm). Từ O kẻ OH vuông góc với đường thẳng d H d. Nối A với B AB cắt OH tại K và cắt OM tại I. Tia OM cắt O R tại E. a) Chứng minh rằng năm điểm AOBHM cùng thuộc một đường tròn. b) Chứng minh rằng OK OH OI OM. c) Chứng minh E là tâm đường tròn nội tiếp tam giác MAB. d) Tìm vị trí của M trên đường thẳng d để diện tích tam giác OIK đạt giá trị lớn nhất.