Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài giảng cơ bản và nâng cao Toán 10 (Tập 2 Hình học 10)

Tài liệu gồm 301 trang, được biên soạn bởi thầy giáo Trần Đình Cư, tổng hợp đầy đủ lý thuyết, các dạng toán và bài tập từ cơ bản đến nâng cao các chuyên đề Toán lớp 10 phần Hình học. Khái quát nội dung tài liệu bài giảng cơ bản và nâng cao Toán 10 (Tập 2: Hình học 10): CHƯƠNG 1 . VECTƠ. BÀI 1. ĐỊNH NGHĨA. Dạng 1: Xác định một vectơ; phương, hướng của vectơ; độ dài của vectơ. Dạng 2: Chứng minh hai vectơ bằng nhau. BÀI 2. TỔNG VÀ HIỆU HAI VECTƠ. Dạng 1: Xác định độ dài tổng, hiệu của các vectơ. Dạng 2: Chứng minh đẳng thức vectơ. BÀI 3. TÍCH VECTƠ VỚI MỘT SỐ. Dạng 1: Dựng và tính độ dài vectơ chứa tích một vectơ với một số. Dạng 2: Chứng minh đẳng thức vectơ. Dạng 3: Xác định điểm M thoả mãn một đẳng thức vectơ cho trước. Dạng 4: Phân tích một vectơ theo hai vectơ không cùng phương. Dạng 5: Chứng minh hai điểm trùng nhau, hai tam giác cùng trọng tâm. Dạng 6: Tìm tập hợp điểm thỏa mãn điều kiện vectơ cho trước. Dạng 7: Xác định tính chất của hình khi biết một đẳng thức vectơ. Dạng 8: Chứng minh bất đẳng thức và tìm cực trị liên quan đến độ dài vectơ. BÀI 4. HỆ TRỤC TỌA ĐỘ. Dạng 1: Tìm tọa độ điểm, tọa độ vectơ trên mặt phẳng Oxy. Dạng 2: Xác định tọa độ điểm, vectơ liên quan đến biểu thức dạng u + v, u – v, ku. Dạng 3: Xác định tọa độ các điểm của một hình. Dạng 4: Bài toán liên quan đến sự cùng phương của hai vectơ. Phân tích một vectơ qua hai vectơ không cùng phương. CHƯƠNG 2 . TÍCH VÔ HƯỚNG HAI VECTƠ VÀ ỨNG DỤNG. BÀI 1. GIÁ TRỊ LƯỢNG GIÁC CỦA MỘT GÓC BẤT KỲ TỪ 0 ĐỘ ĐẾN 180 ĐỘ. Dạng 1: Xác định giá trị lượng giác của góc đặc biệt. Dạng 2: Chứng minh đẳng thức lượng giác, chứng minh biểu thức không phụ thuộc x, đơn giản biểu thức. Dạng 3: Xác định giá trị của một biểu thức lượng giác có điều kiện. BÀI 2. TÍCH VÔ HƯỚNG CỦA HAI VECTƠ. Dạng 1: Xác định biểu thức tích vô hướng, góc giữa hai vectơ. Dạng 2: Chứng minh các đẳng thức về tích vô hướng hoặc độ dài của đoạn thẳng. Dạng 3: Tìm tập hợp điểm thoả mãn đẳng thức về tích vô hướng hoặc tích độ dài. Dạng 4: Biểu thức tọa độ của tích vô hướng. BÀI 3. CÁC HỆ THỨC LƯỢNG TRONG TAM GIÁC VÀ GIẢI TAM GIÁC. Dạng 1: Xác định các yếu tố trong tam giác. Dạng 2: Giải tam giác. Dạng 3: Chứng minh đẳng thức, bất đẳng thức liên quan đến các yếu tố của tam giác, tứ giác. Dạng 4: Nhận dạng tam giác. CHƯƠNG 3 . PHƯƠNG PHÁP TỌA ĐỘ TRONG MẶT PHẲNG. BÀI 1. PHƯƠNG TRÌNH ĐƯỜNG THẲNG. Dạng 1: Viết phương trình tổng quát của đường thẳng. Dạng 2: Xét vị trí tương đối của hai đường thẳng. Dạng 3: Viết phương trình tham số và chính tắc của đường thẳng. Dạng 4: Xác định tọa độ điểm thuộc đường thẳng. Dạng 5: Bài toán liên quan đến khoảng cách từ một điểm tới một đường thẳng. Dạng 6: Bài toán liên quan đến góc giữa hai đường thẳng. BÀI 2. PHƯƠNG TRÌNH ĐƯỜNG TRÒN. Dạng 1: Nhận dạng phương trình đường tròn. Tìm tâm và bán kính đường tròn. Dạng 2: Viết phương trình đường tròn. Dạng 3: Vị trí tương đối của điểm; đường thẳng; đường tròn với đường tròn. Dạng 4: Viết phương trình tiếp tuyến với đường tròn. BÀI 3. PHƯƠNG TRÌNH ELIP. Dạng 1: Xác định các yếu tố của elip khi biết phương trình chính tắc của elip. Dạng 2: Viết phương trình chính tắc của đường elip. Dạng 3: Xác định điểm nằm trên đường elip thỏa mãn điều kiện cho trước.

Nguồn: toanmath.com

Đọc Sách

Một số phương pháp giải phương trình hàm và bất phương trình hàm - Bùi Ngọc Diệp
Tài liệu gồm 109 trang, được biên soạn bởi thầy giáo Bùi Ngọc Diệp, hướng dẫn một số phương pháp giải phương trình hàm và bất phương trình hàm qua các kỳ thi Olympic Toán. Hàm số là một trong những đối tượng nghiên cứu trung tâm của Toán sơ cấp. Một trong những chủ đề liên quan đến hàm số thường xuyên xuất hiện trong các kỳ thi chọn học sinh giỏi cấp tỉnh, kỳ thi chọn học sinh giỏi Quốc gia và kỳ thi Olympic toán Quốc tế là giải phương trình hàm, bất phương trình hàm. Đối với các phương trình, bất phương trình đại số trong sách giáo khoa, mục tiêu của chúng ta là tìm các biến chưa biết nhưng đối với phương trình hàm, bất phương trình hàm chúng ta cần phải tìm một “hàm số” thỏa mãn một số điều kiện ràng buộc cho trước của bài toán. Đây là một chủ đề khó. Đừng trước mỗi bài toán thuộc chủ đề này, học sinh phải nắm vững được những kĩ thuật, phương pháp giải, cũng như phải có sự xử lí khéo léo khi đứng trước những tình huống cụ thể. Chúng ta có nhiều phương pháp cũng như hướng tiếp cận khác nhau đối với các bài toán thuộc chủ đề này. Với mục tiêu muốn đóng góp một phần nào đó trong việc hoàn thành một bức tranh tổng thể về các phương pháp giải phương trình hàm và bất phương trình hàm, trong chuyên đề này chúng tôi sẽ giới thiệu tới bạn đọc hai phương pháp thường được sử dụng để giải quyết các bài toán thuộc chủ đề này thông qua các bài toán cụ thể, đó là phương pháp giải tích và phương pháp tổng hợp. Trong từng phương pháp, chúng tôi sẽ đưa ra một hệ thống các bài toán với những lời giải chi tiết, rõ ràng. Hơn nữa, sau mỗi lời giải, chúng tôi ra đưa những nhận xét, phân tích, bình luận để giúp người đọc có một cách nhìn tổng quan hơn về bài toán đó cũng như phương pháp được sử dụng. Mục tiêu của chuyên đề này là giới thiệu phương pháp giải tích và phương pháp tổng hợp với những kĩ thuật đặc trưng của nó thông qua các ví dụ cụ thể thông qua một số bài toán phương trình hàm, bất phương trình đã xuất hiện trong các kỳ thi học sinh giỏi quốc gia và quốc tế. Chuyên đề được bố cục như sau: Trong chương 1, chúng tôi sẽ giới thiệu phương pháp giải tích thông qua hệ thống các bài toán cùng với những kĩ thuật và lưu ý cần thiết khi sử dụng phương pháp này. Trong chương 2, chúng tôi sẽ giới thiệu tới bạn đọc phương pháp tổng hợp thông qua hệ thống gồm mười bài toán khác nhau. Đây là phương pháp thông dụng nhất, nó là sự kết hợp giữa nhiều phương pháp, kĩ thuật khác nhau. Trong chương 3, chúng tôi đưa một số bài toán khác mà phương pháp giải chúng là hai phương pháp nói trên nhưng không kèm theo các nhận xét, phân tích. Trong chương 4, chúng tôi đưa một hệ thống các bài toán không có lời giải dành cho bạn đọc tự luyện tập.
Chuyên đề phương trình hàm đa thức - Nguyễn Phúc Thọ
Chuyên đề phương trình hàm đa thức gồm 22 trang, được biên soạn bởi tác giả Nguyễn Phúc Thọ, tuyển tập các bài toán hay về phương trình hàm đa thức, có đáp án và lời giải chi tiết. Trích dẫn chuyên đề phương trình hàm đa thức – Nguyễn Phúc Thọ : + Tìm tất cả các đa thức P(x) thoả mãn P(a + b) = 6 P(a) + P(b) + 15a 2b 2 (a + b)) (1) Với mọi số phức a và b sao cho a 2 + b 2 = ab. + Tìm đa thức P(x) với hệ số thực, có bậc nhỏ hơn n ∈ N∗. Sao cho tồn tại n số thực đôi một phân biệt là a1, a2, …, an thoả mãn điều kiện với mỗi i, j ∈ {1,2,…,n} ta có |P(ai)− P(aj)| = n|ai − aj|. + Tìm tất cả các đa thức P(x) với hệ số thực và không có nghiệm bội sao cho với mỗi số phức z thì phương trình zP(z) = 1 thoả mãn khi và chỉ khi P(z −1)P(z + 1) = 1.
Phương trình hàm liên quan đến các tính chất số học - Nguyễn Tài Chung
Trong các kì thi Olympic Toán trên thế giới những năm gần đây xuất hiện nhiều bài toán xác định hàm số mà trong lời giải cần sử dụng khá nhiều tính chất số học, tính chất nghiệm của phương trình nghiệm nguyên. Các bài toán này đa dạng, khó và điều quan trọng khi chúng ta tiếp cận chúng là phải dự đoán được nghiệm để tìm ra tính chất đặc trưng cho hàm cần tìm. Muốn học tốt phần này trước hết học sinh phải được trang bị kiến thức nền tương đối đầy đủ về Số học và Phương trình hàm. Trong bài viết chuyên đề này thầy Nguyễn Tài Chung nêu ra một số ví dụ tiêu biểu cùng với một hệ thống bài tập tương đối nhiều, được sưu tầm qua các kỳ thi Olympic trong những năm gần đây, qua đó nhằm giúp học sinh có những kĩ năng và phương pháp nhất định khi tiếp cận những bài toán dạng này.
Những cặp phương trình hàm - Nguyễn Tài Chung
Tài liệu gồm 51 trang, được biên soạn bởi thầy giáo Nguyễn Tài Chung (giáo viên bộ môn Toán trường THPT chuyên Hùng Vương, tỉnh Gia Lai), tuyển tập những bài toán phương trình hàm, có hướng dẫn giải chi tiết, giúp học sinh ôn tập chuẩn bị cho kỳ thi học sinh giỏi Toán cấp quốc gia, quốc tế.