Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề giao lưu học sinh giỏi lớp 8 môn Toán năm 2017 2018 phòng GD ĐT thành phố Thái Nguyên

Nội dung Đề giao lưu học sinh giỏi lớp 8 môn Toán năm 2017 2018 phòng GD ĐT thành phố Thái Nguyên Bản PDF - Nội dung bài viết Đề giao lưu học sinh giỏi Toán lớp 8 năm 2017 – 2018 phòng GD&ĐT thành phố Thái Nguyên Đề giao lưu học sinh giỏi Toán lớp 8 năm 2017 – 2018 phòng GD&ĐT thành phố Thái Nguyên Đề giao lưu học sinh giỏi Toán lớp 8 năm 2017 – 2018 do phòng Giáo dục và Đào tạo thành phố Thái Nguyên tổ chức nhằm tạo cơ hội cho các em học sinh giỏi có cơ hội trình bày kiến thức và kỹ năng Toán của mình. Đề thi được chuẩn bị kỹ lưỡng, đa dạng về dạng bài tập và mức độ khó, giúp các em thử sức và phát huy tối đa khả năng. Qua đề giao lưu này, các em học sinh giỏi được tiếp cận với những bài tập mới lạ, thách thức và phát triển khả năng tư duy logic, sáng tạo trong giải quyet vấn đề. Đề thi không chỉ là bài kiểm tra mà còn là cơ hội rèn luyện kỹ năng Toán và mở rộng kiến thức cho các em. Đề giao lưu học sinh giỏi Toán lớp 8 năm 2017 – 2018 là một hoạt động giáo dục ý nghĩa, góp phần nâng cao chất lượng giáo dục và đào tạo ở thành phố Thái Nguyên.

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi Toán 8 năm 2022 - 2023 phòng GDĐT Như Thanh - Thanh Hoá
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi văn hóa môn Toán 8 cấp huyện năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Như Thanh, tỉnh Thanh Hoá; kỳ thi được diễn ra vào ngày 12 tháng 01 năm 2023. Trích dẫn Đề học sinh giỏi Toán 8 năm 2022 – 2023 phòng GD&ĐT Như Thanh – Thanh Hoá : + Cho biểu thức A. Rút gọn A và tìm số nguyên x để A chia hết cho 2. Cho các số thực a, b, c đôi một khác nhau thỏa mãn: a3 + b3 + c3 = 3abc và abc khác 0. Tính giá trị của biểu thức P. + Tìm cặp số nguyên (x;y) thỏa mãn phương trình: x3 + 3x = x2y + 2y + 5. Cho x; y là các số nguyên khác 0; 1; -1 và x + y chia hết cho xy. Chứng minh rằng x3 + 1 không chia hết cho y. + Cho tứ giác ABCD. Gọi E, I lần lượt là trung điểm của AC và BC; M là điểm đối xứng với I qua E. 1. Chứng minh tứ giác ABIM là hình bình hành. 2. Gọi N, F lần lượt là trung điểm của AD và BD; K là điểm đối xứng với I qua F. Chứng minh ba đường thẳng IN; MF; KE đồng quy. 3. Gọi O là giao hai đường chéo AC và BD. Kí hiệu: S; S1; S2 lần lượt là diện tích tứ giác ABCD, tam giác AOB và tam giác COD. Biết S1 = a2; S2 = b2 với a, b là các số dương cho trước. Tìm điều kiện của tứ giác ABCD để S = (a + b)2.
Đề học sinh giỏi huyện Toán 8 năm 2022 - 2023 phòng GDĐT Yên Bình - Yên Bái
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp huyện môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Yên Bình, tỉnh Yên Bái (đề chính thức và đề dự bị); đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào ngày 28 tháng 11 năm 2022. Trích dẫn Đề học sinh giỏi huyện Toán 8 năm 2022 – 2023 phòng GD&ĐT Yên Bình – Yên Bái : + Tìm giá trị nhỏ nhất của biểu thức: A = 2×2 + 3x – 4. + Tìm các số nguyên x, y thỏa mãn: 2xy + 3x – 5y = 9. + Cho hình vuông ABCD. Qua A vẽ hai đường thẳng vuông góc với nhau lần lượt cắt đường thẳng BC tại P và R, cắt đường thẳng CD tại Q và S. a. Chứng minh ∆AQR và ∆APS là các tam giác cân. b. QR cắt PS tại H; M, N lần lượt là trung điểm của QR và PS. Chứng minh tứ giác AMHN là hình chữ nhật. c. Chứng minh P là trực tâm ∆SQR. d. Chứng minh MN là đường trung trực của AC. e. Chứng minh bốn điểm M, B, N, D thẳng hàng.
Đề học sinh giỏi Toán 8 năm 2022 - 2023 trường THCS Nguyễn Bá Ngọc - Thanh Hoá
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn đội tuyển học sinh giỏi cấp huyện môn Toán 8 năm học 2022 – 2023 trường THCS Nguyễn Bá Ngọc, huyện Quảng Xương, tỉnh Thanh Hoá; đề thi gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề học sinh giỏi Toán 8 năm 2022 – 2023 trường THCS Nguyễn Bá Ngọc – Thanh Hoá : + Tìm đa thức f(x) biết rằng: f(x) chia cho x + 2 dư 10, f(x) chia cho x – 2 dư 22, f(x) chia cho x2 – 4 được thương là –5x và còn dư. + Cho 2 số tự nhiên a, b thỏa mãn: 2a2 + a = 3b2 + b. Chứng minh rằng 2a + 2b + 1 là số chính phương. + Cho hình vuông ABCD. Qua A vẽ hai đường thẳng vuông góc với nhau lần lượt cắt BC tại P và R, cắt CD tại Q và S. a) Chứng minh tam giác AQR và tam giác APS là các tam giác cân. b) QR cắt PS tại H; M, N là trung điểm của QR và PS. Chứng minh tứ giác AMHN là hình chữ nhật. c) Chứng minh P là trực tâm tam giác SQR. d) Chứng minh bốn điểm M, B, N, D thẳng hàng.
10 đề khảo sát chất lượng học sinh giỏi môn Toán 8 (nội dung HK1)
Tài liệu gồm 10 trang, được biên soạn bởi thầy giáo Lương Tuấn Đức (Giang Sơn), tuyển tập 10 đề khảo sát chất lượng học sinh giỏi môn Toán 8 (nội dung học kỳ 1); các đề được biên soạn bám sát cấu trúc đề thi chọn HSG Toán 8 của sở Giáo dục và Đào tạo tỉnh Thái Bình. Trích dẫn 10 đề khảo sát chất lượng học sinh giỏi môn Toán 8 (nội dung HK1): + Cho hình thang vuông ABCD vuông tại A và D có CD AB 2. Gọi H là hình chiếu của điểm D trên đường chéo AC, M là trung điểm của đoạn HC. Chứng minh rằng BMD 90. + Cho tam giác ABC, điểm M thuộc cạnh BC, gọi D là điểm đối xứng với M qua AB, E là điểm đối xứng của M qua AC. Vẽ hình bình hành MDNE. Chứng minh AN song song với BC. + Chứng minh rằng trong 5 số nguyên dương bất kỳ, tồn tại một số chia hết cho 5 hoặc một vài số có tổng chia hết cho 5.