Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phương pháp phân tích thành nhân tử trong việc giải phương trình lượng giác - Trần Thông

Phương trình lượng giác là vấn đề quan trọng và quen thuộc trong chương trình toán học bậc THPT cũng như trong các đề thi tuyển sinh đại học. Việc giải thành thạo phương trình lượng giác đã trở thành nhiệm vụ và cũng là mong muốn của mọi học sinh. Tuy nhiên, sự phong phú của công thức lượng giác đã gây khó khăn cho học sinh trong việc định hướng lời giải. Nếu định hướng không tốt sẽ dẫn đến biến đổi vòng vo, không giải được hoặc lời giải sẽ dài dòng, không đẹp. Cản trở này phần nào làm nản chí các em học sinh. Một số em đã sợ học và xác định bỏ phần phương trình lượng giác. Với mong muốn giúp học sinh khắc phục khó khăn này, tôi viết bài viết này. Bài viết đưa ra một số định hướng biến đổi phương trình dựa trên những dấu hiệu đặc biệt. Nhờ đó học sinh nhanh chóng tìm ra lời giải của bài toán, tiết kiệm thời gian, tự tin hơn trước các phương trình lượng giác. Bài viết được chia thành ba phần: [ads] + Phần A: Trình bày sự cần thiết và nội dung bài viết + Phần B: Nội dung bài viết, phần này chia thành các mục nhỏ dưới đây I. Nhận dạng nhân tử chung dựa vào đẳng thức cơ bản II. Phương trình bậc 2 đối với sinx, cosx III. Nhẩm nghiệm đặc biệt để xác định nhân tử chung IV. Sử dụng công thức đặc biệt V. Thay thế hằng số bằng đẳng thức lượng giác + Phần C: Trình bày một số bài tập tương tự.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề công thức lượng giác và phương trình lượng giác
Tài liệu gồm 169 trang tóm tắt lý thuyết, công thức, tuyển chọn các bài toán có lời giải chi tiết chuyên đề công thức lượng giác và phương trình lượng giác. Nội dung tài liệu được chia thành 2 phần: + Phần 1. Công thức lượng giác (Chương trình Đại số 10) + Phần 2. Phương trình lượng giác (Chương trình Đại số và Giải tích 11) [ads]
Chuyên đề lượng giác - Trần Văn Hạo
Sách scan chuyên đề Lượng giác luyện thi vào đại học do nhà xuất bản giáo dục Việt Nam phát hành. Sách gồm 2 phần: + Phần 1. Kiến thức cơ bản và ví dụ áp dụng + Phần 2. Hướng dẫn giải và câu hỏi trắc nghiệm ôn tập
Phương pháp giải phương trình lượng giác - Trung tâm LTĐH Vĩnh Viễn
Tài liệu gồm 27 trang, với nội dung gồm: + Vấn đề 1. Phương trình lượng giác: Tóm tắt cách giải 5 dạng toán và 53 bài toán chọn lọc có lời giải + Vấn đề 2. Giải phương trình lượng giác trên một miền + Vấn đề 3. Điều kiện có nghiệm của phương trình lượng giác + Vấn đề 4. Bài toán về tam giác
Trắc nghiệm lượng giác có lời giải chi tiết trong các đề thi thử Toán 2018
Tài liệu gồm 145 trang tổng hợp câu hỏi và bài tập trắc nghiệm lượng giác có lời giải chi tiết trong các đề thi thử Toán 2018 của các trường THPT và sở Giáo dục – Đào tạo trên cả nước, các câu hỏi trong tài liệu được chia thành 4 mức độ nhận thức: nhận biết, thông hiểu, vận dụng thấp và vận dụng cao. Tài liệu rất hữu ích cho các em học sinh lớp 11 và 12 trong quá trình ôn tập hướng đến kỳ thi THPT Quốc gia môn Toán năm 2019.