Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề Toán tuyển sinh lớp 10 THPT năm 2019 - 2020 sở GDĐT Bình Dương

Ngày 30 tháng 05 năm 2019, sở Giáo dục và Đào tạo tỉnh Bình Dương tổ chức kỳ thi tuyển sinh vào lớp 10 khối THPT môn Toán năm học 2019 – 2020, nhằm tuyển chọn các em học sinh đạt tiêu chí đề ra vào các trường THPT trên địa bàn tỉnh Bình Dương, để chuẩn bị cho năm học mới. Đề Toán tuyển sinh lớp 10 THPT năm 2019 – 2020 sở GD&ĐT Bình Dương gồm 1 trang với 5 bài toán dạng tự luận, thời gian học sinh làm bài 120 phút, đề thi có lời giải chi tiết. Trích dẫn đề Toán tuyển sinh lớp 10 THPT năm 2019 – 2020 sở GD&ĐT Bình Dương : + Một tổ công nhân theo kế hoạch phải làm 140 sản phẩm trong một thời gian nhất định. Nhưng khi thực hiện năng suất của tổ đã vượt năng suất dự định là 4 sản phẩm mỗi ngày. Do đó tổ đã hoàn thành công việc sớm hơn dự định 4 ngày. Hỏi thực tế mỗi ngày tổ đã làm được bao nhiêu sản phẩm? [ads] + Cho đường tròn (O; R). Từ một điểm M nằm ngoài đường tròn (O; R) sao cho OM = 2R, vẽ hai tiếp tuyến MA, MB với đường tròn (A, B là hai tiếp điểm). Lấy một điểm N tùy ý trên cung nhỏ AB. Gọi I, H, K lần lượt là hình chiếu vuông góc của N trên AB, AM, BM. 1) Tính diện tích tứ giác MAOB theo R. 2) Chứng minh: góc NIH = góc NBA. 3) Gọi E là giao điểm của AN và IH, F là giao điểm của BN và IK. Chứng minh tứ giác IENF nội tiếp được trong một đường tròn. 4) Giả sử O, N, M thẳng hàng. Chứng minh: NA^2 + NB^2 = 2R^2. + Cho phương trình x^2 + ax + b + 2 = 0 (a, b là tham số). Tìm tất cả các giá trị của a, b để phương trình trên có hai nghiệm phân biệt x1, x2 thỏa mãn điều kiện: x1 – x2 = 4 và x1^3 – x2^3 = 28.

Nguồn: toanmath.com

Đọc Sách

Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Long An
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Long An gồm 4 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho hai hàm số : y = -x2 và y = 2x – 5. Vẽ đồ thị hai hàm số đã cho trên cùng mặt phẳng tọa độ Oxy. + Viết phương trình đường thẳng (d): y = ax + b, biết (d) đi qua hai điểm A(-1; 10); B(3; -2). + Cho đường tròn (O) đường kính AC. Trên bán kính OC lấy điểm B tùy ý (B không trùng O và C). Gọi M là trung điểm của đoạn thẳng AB. Qua M kẻ dây cung DE vuông góc với AB. Kẻ BI vuông góc với CD (I thuộc CD). [ads] a) Cho AM = 4cm; MC = 9cm. Tình độ dài đoạn thẳng MD và tanA của tam giác MDA. b) Chứng minh : BMDI là tứ giác nội tiếp. c) Chứng minh ADBE là hình thoi và ba điểm I; B; E thẳng hàng. d) Gọi O’ là tâm đường tròn đường kính BC. Chứng minh: MI là tiếp tuyến của (O’).
Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Thanh Hóa
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Thanh Hóa gồm 4 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho phương trình: nx^2 + x – 2 = 0 (1), với n là tham số. a) Giải phương trình (1) khi n = 0. b) Giải phương trình (1) khi n = 1. [ads] + Cho nửa đường tròn (O) đường kính MN = 2R. Gọi (d) là tiếp tuyến của (O) tại N. Trên cung MN lấy điểm E tùy ý (E không trùng với M và N), tia ME cắt (d) tại điểm F. Gọi P là trung điểm của ME, tia PO cắt (d) tại điểm Q. 1. Chứng minh ONFP là tứ giác nội tiếp. 2. Chứng minh: OF vuông góc với MQ và PM.PF = PO.PQ. 3. Xác định vị trí điểm E trên cung MN để tổng MF + 2ME đạt giá trị nhỏ nhất.
Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT An Giang
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT An Giang gồm 5 bài toán tự luận, có lời giải chi tiết. Lời giải của thầy Nguyễn Chí Dũng. Trích một số bài toán trong đề: + Cho điểm C thuộc nửa đường tròn đường kính AB. Kẻ tiếp tuyến Ax với nửa đường tròn đó (Ax nằm trên cùng nửa mặt phẳng có bờ là đường thẳng AB chứa nửa đường tròn). Tia phân giác của góc CAx cắt nửa đường tròn tại D. Kéo dài AD và BC cắt nhau tại E. Kẻ EH vuông góc với Ax tại H a. Chứng minh tứ giác AHEC nội tiếp. b. Chứng minh hai góc ABD và DBC bằng nhau. c. Chứng minh tam giác ABE cân. d. Tia BD cắt AC và Ax lần lượt tại F và K. Chứng minh AKEF là hình thoi. [ads] + Ngọn Hải đăng Kê Gà ở tỉnh Bình Thuận là ngọn tháp thắp đèn gần bờ biển dùng để định hướng cho tàu thuyền giao thông trong khu vực vào ban đêm. Đây là ngọn Hải đăng được xem là cổ xưa và cao nhất Việt Nam, chiều cao của ngọn đèn so với mặt nước biển là 65m. Hỏi: a. Một người quan sát đứng tại vị trí đèn của Hải đăng nhìn xa tối đa bao nhiêu km trên mặt biển? b. Cách bao xa thì một người quan sát đứng ở trên tàu bắt đầu trông thấy ngọn đèn này, biết rằng mắt người quan sát đứng ở trên tàu có độ cao 5m so với mặt nước biển? (Cho biết bán kính Trái Đất gần bằng 6400km và điều kiện quan sát trên biển là không bị che khuất).
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Vĩnh Phúc
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 – 2018 môn Toán sở GD và ĐT Vĩnh Phúc gồm 5 bài toán tự luận, có lời giải chi tiết.