Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 9 môn Toán năm 2023 2024 trường THCS Nguyễn Trường Tộ Hà Nội

Nội dung Đề học sinh giỏi lớp 9 môn Toán năm 2023 2024 trường THCS Nguyễn Trường Tộ Hà Nội Bản PDF - Nội dung bài viết Đề học sinh giỏi Toán lớp 9 trường THCS Nguyễn Trường Tộ Hà Nội Đề học sinh giỏi Toán lớp 9 trường THCS Nguyễn Trường Tộ Hà Nội Chúng ta sẽ cùng tìm hiểu về đề khảo sát chất lượng học sinh giỏi môn Toán lớp 9 năm học 2023 – 2024 của trường THCS Nguyễn Trường Tộ ở Hà Nội. Đề thi diễn ra vào ngày 16 tháng 09 năm 2023 với các câu hỏi hấp dẫn và thú vị như sau: 1. Cho ba số nguyên dương m, n, p thỏa mãn: (m + n!)(n + m!) = 5^p. Hãy chứng minh rằng mn là số chính phương. 2. Trong tam giác không cân ABC nhọn, với các đường cao AD, BE, CF cắt nhau tại trực tâm H. Gọi M, I lần lượt là trung điểm của BC, AH. Chúng ta cần thực hiện các bước sau: Chứng minh rằng IE vuông góc với ME. Chứng minh rằng SA song song với BC. Chứng minh rằng I là trung điểm của PQ, trong đó P, Q lần lượt là giao điểm của SI với BE, CF. 3. Cho 2023 điểm phân biệt được phủ lên bởi một tam giác vuông cân có cạnh huyền bằng 24. Chứng minh rằng luôn tồn tại một hình tròn có đường kính bằng 1, phủ lên ít nhất 7 điểm đã cho. Đây là những câu hỏi đầy thách thức, đòi hỏi sự tư duy logic và kỹ năng giải quyết vấn đề từ các em học sinh. Hy vọng rằng đề thi sẽ giúp các em rèn luyện và phát triển khả năng Toán học của mình một cách hiệu quả.

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi Toán 9 năm 2021 - 2022 phòng GDĐT Thanh Oai - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi Toán 9 năm 2021 – 2022 phòng GD&ĐT Thanh Oai – Hà Nội.
Đề học sinh giỏi Toán 9 năm 2021 - 2022 phòng GDĐT Triệu Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi lớp 9 cấp huyện môn Toán năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Triệu Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào thứ Sáu ngày 31 tháng 12 năm 2021.
Đề chọn HSG Toán 9 đợt 1 năm 2021 - 2022 phòng GDĐT Ứng Hòa - Hà Nội
Đề chọn HSG Toán 9 đợt 1 năm 2021 – 2022 phòng GD&ĐT Ứng Hòa – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút. Trích dẫn đề chọn HSG Toán 9 đợt 1 năm 2021 – 2022 phòng GD&ĐT Ứng Hòa – Hà Nội : + Cho các hàm số bậc nhất. Với giá trị nào của m thì đường thẳng d1 cắt hai đường thẳng d2 và d3 lần lượt tại hai điểm A và B sao cho A có hoành độ âm còn B có hoành độ dương. + Cho ABC có ba góc nhọn cân tại A. Các đường cao AD, BE cắt nhau tại H. 1. Chứng minh: ABC đồng dạng DEC. 2. Chứng minh: cosABC. + Trong hình vuông cạnh bằng 1 cho 33 điểm bất kỳ. Chứng minh rằng trong các điểm đã cho có thể tìm được 3 điểm lập thành tam giác có diện tích không lớn hơn 1/32.
Đề học sinh giỏi huyện Toán 9 năm 2021 - 2022 phòng GDĐT Nam Đàn - Nghệ An
Đề học sinh giỏi huyện Toán 9 năm 2021 – 2022 phòng GD&ĐT Nam Đàn – Nghệ An được biên soạn theo hình thức đề thi tự luận, đề gồm 01 trang với 05 bài toán, thời gian làm bài 150 phút.