Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 12 môn Toán năm 2022 2023 trường THPT Hàm Rồng Thanh Hóa

Nội dung Đề học sinh giỏi lớp 12 môn Toán năm 2022 2023 trường THPT Hàm Rồng Thanh Hóa Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 năm học 2022 – 2023 trường THPT Hàm Rồng, tỉnh Thanh Hóa; đề thi hình thức trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút (không kể thời gian giao đề); đề thi có đáp án mã đề 652 740 420 007. Trích dẫn Đề học sinh giỏi Toán lớp 12 năm 2022 – 2023 trường THPT Hàm Rồng – Thanh Hóa : + Bạn Nam có một hộp bi gồm 2 viên bi màu đỏ và 4 viên bi màu trắng. Bạn Định cũng có một hộp bi giống như của bạn Nam. Từ hộp của mình, mỗi bạn chọn ngẫu nhiên 3 viên bi. Xác suất để trong các viên bi được chọn luôn có bi màu đỏ và số bi đỏ của hai bạn bằng nhau là? + Một công ty mỹ phẩm chuẩn bị ra một mẫu sản phẩm dưỡng da mới mang tên Ngọc Trai với thiết kế một khối cầu như viên ngọc trai, bên trong là một khối trụ nằm trong nửa khối cầu để dựng kem dưỡng. Theo dự kiến, nhà sản xuất có dự định để khối cầu có bán kính là R 3 3 cm. Tính thể tích lớn nhất của khối trụ đựng kem để thể tích thực ghi trên bìa hộp là lớn nhất (với mục đích thu hút khách hàng). + Cho tập hợp A gồm n phần tử (n >= 4). Biết rằng số tập con gồm 4 phần tử của A bằng 20 lần số tập con gồm 2 phần tử của A. Biết rằng k là số tự nhiên trong các số từ 1 đến n thỏa mãn số tập con gồm k phần tử của A là lớn nhất. Số k thuộc khoảng nào sau đây?

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi lớp 12 môn Toán năm học 2017 2018 trường THPT Đan Phượng Hà Nội
Nội dung Đề thi học sinh giỏi lớp 12 môn Toán năm học 2017 2018 trường THPT Đan Phượng Hà Nội Bản PDF Đề thi học sinh giỏi môn Toán lớp 12 năm học 2017 – 2018 trường THPT Đan Phượng – Hà Nội gồm 5 bài toán tự luận, thời gian làm bài 180 phút. Đề thi có đáp án, lời giải chi tiết và thang điểm. Trích dẫn đề thi : + Cho hàm số: y = (x – 1)/2(x + 1) (C). Tìm những điểm M trên (C) sao cho tiếp tuyến với (C) tại M tạo với hai trục tọa độ một tam giác có trọng tâm nằm trên đường thẳng 4x + y = 0. [ads] + Cho hàm số y = x^3 – 3(m+1)x – 2 với m là tham số. Tìm các giá trị của m để đồ thị hàm số cắt trục Ox tại một điểm. + Cho tam giác ABC vuông tại A, D là một điểm nằm trong tam giác ABC sao cho CD = CA. M là một điểm trên cạnh AB sao cho góc BDM = 1/2.ACD, N là giao điểm của MD và đường cao AH của tam giác ABC. Chứng minh DM = DN. + Cho tam giác ABC cân tại A có AB = AC = a, góc BAC = 120 độ. Điểm S thay đổi trong không gian nhưng luôn nằm về 1 phía của mặt phẳng (ABC) và AS = a, góc SAB = 60 độ. Gọi H là hình chiếu của S trên mặt phẳng (ABC). a) Chứng minh rằng H thuộc đường thẳng cố định. b) Chứng minh rằng khi độ dài SH lớn nhất thì hai mặt phẳng (SAB) và (ABC) vuông góc với nhau và khi đó tính độ dài SC.
Đề thi chọn học sinh giỏi cấp tỉnh lớp 12 môn Toán năm học 2017 2018 sở GD và ĐT Thái Nguyên
Nội dung Đề thi chọn học sinh giỏi cấp tỉnh lớp 12 môn Toán năm học 2017 2018 sở GD và ĐT Thái Nguyên Bản PDF Đề thi chọn học sinh giỏi cấp tỉnh Toán lớp 12 năm học 2017 – 2018 sở GD và ĐT Thái Nguyên gồm 5 bài toán tự luận, thời gian làm bài 180 phút. Kỳ thi diễn ra vào ngày 12/10/2017.
Đề thi chọn HSG cấp tỉnh THPT năm học 2017 2018 môn Toán sở GD và ĐT Hải Dương
Nội dung Đề thi chọn HSG cấp tỉnh THPT năm học 2017 2018 môn Toán sở GD và ĐT Hải Dương Bản PDF Đề thi chọn học sinh giỏi (HSG) cấp tỉnh lớp 12 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Hải Dương gồm 5 bài toán tự luận, có lời giải chi tiết và thang điểm. Trích dẫn đề thi : + Một công ty muốn làm một đường ống dẫn dầu từ một kho A ở trên bờ biển đến một vị trí B trên một hòn đảo. Hòn đảo cách bờ biển 6 km. Gọi C là điểm trên bờ sao cho BC vuông góc với bờ biển. Khoảng cách từ A đến C là 9 km. Người ta cần xác định một vị trí D trên AC để lắp ống dẫn theo đường gấp khúc ADB. Tính khoảng cách AD để số tiền chi phí thấp nhất, biết rằng giá để lắp đặt mỗi km đường ống trên bờ là 100.000.000 đồng và dưới nước là 260.000.000 đồng. [ads] + Trong mặt phẳng Oxy, cho đường tròn (I) có hai đường kính AB và MN với A B (1;3), (3; -1). Tiếp tuyến của (I) tại B cắt các đường thẳng AM và AN lần lượt tại E và F. Tìm tọa độ trực tâm H của tam giác MEF sao cho H nằm trên đường thẳng d: x – y + 6 = 0 và có hoành độ dương. + Tìm tất cả các giá trị của m để đồ thị hàm số y = x^3 – 3mx + 1 có hai điểm cực trị A, B sao cho diện tích ΔIAB bằng 8√2.
Đề thi thành lập đội tuyển HSG lớp 12 môn Toán dự thi Quốc gia năm học 2016 – 2017 sở GD và ĐT Bình Thuận
Nội dung Đề thi thành lập đội tuyển HSG lớp 12 môn Toán dự thi Quốc gia năm học 2016 – 2017 sở GD và ĐT Bình Thuận Bản PDF Đề thi thành lập đội tuyển HSG Toán lớp 12 THPT dự thi Quốc gia năm học 2016 – 2017 sở GD và ĐT Bình Thuận gồm 4 bài toán tự luận, có lời giải chi tiết.