Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 12 môn Toán năm 2022 2023 trường THPT Hàm Rồng Thanh Hóa

Nội dung Đề học sinh giỏi lớp 12 môn Toán năm 2022 2023 trường THPT Hàm Rồng Thanh Hóa Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 năm học 2022 – 2023 trường THPT Hàm Rồng, tỉnh Thanh Hóa; đề thi hình thức trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút (không kể thời gian giao đề); đề thi có đáp án mã đề 652 740 420 007. Trích dẫn Đề học sinh giỏi Toán lớp 12 năm 2022 – 2023 trường THPT Hàm Rồng – Thanh Hóa : + Bạn Nam có một hộp bi gồm 2 viên bi màu đỏ và 4 viên bi màu trắng. Bạn Định cũng có một hộp bi giống như của bạn Nam. Từ hộp của mình, mỗi bạn chọn ngẫu nhiên 3 viên bi. Xác suất để trong các viên bi được chọn luôn có bi màu đỏ và số bi đỏ của hai bạn bằng nhau là? + Một công ty mỹ phẩm chuẩn bị ra một mẫu sản phẩm dưỡng da mới mang tên Ngọc Trai với thiết kế một khối cầu như viên ngọc trai, bên trong là một khối trụ nằm trong nửa khối cầu để dựng kem dưỡng. Theo dự kiến, nhà sản xuất có dự định để khối cầu có bán kính là R 3 3 cm. Tính thể tích lớn nhất của khối trụ đựng kem để thể tích thực ghi trên bìa hộp là lớn nhất (với mục đích thu hút khách hàng). + Cho tập hợp A gồm n phần tử (n >= 4). Biết rằng số tập con gồm 4 phần tử của A bằng 20 lần số tập con gồm 2 phần tử của A. Biết rằng k là số tự nhiên trong các số từ 1 đến n thỏa mãn số tập con gồm k phần tử của A là lớn nhất. Số k thuộc khoảng nào sau đây?

Nguồn: sytu.vn

Đọc Sách

Đề thi HSG Toán 12 (vòng 2) năm 2020 - 2021 trường chuyên Nguyễn Du - Đắk Lắk
Thứ Năm ngày 10 tháng 09 năm 2020, trường THPT chuyên Nguyễn Du, tỉnh Đắk Lắk tổ chức kỳ thi chọn đội tuyển học sinh giỏi môn Toán lớp 12 năm học 2020 – 2021 vòng thi số 2. Đề thi HSG Toán 12 (vòng 2) năm 2020 – 2021 trường chuyên Nguyễn Du – Đắk Lắk được biên soạn theo dạng đề tự luận, đề thi gồm có 01 trang với 05 bài toán, thời gian học sinh làm bài thi là 180 phút. Trích dẫn đề thi HSG Toán 12 (vòng 2) năm 2020 – 2021 trường chuyên Nguyễn Du – Đắk Lắk : + Cho tam giác ABC (AC > AB). Lấy hai điểm M, N lần lượt trên AB và AC sao cho MN song song với BC. Gọi P là giao điểm của hai đoạn thẳng BN và CM. Gọi A’ là điểm đối xứng của A qua đường thẳng BC; (w) là đường tròn ngoại tiếp tam giác AMN. a) Gọi E là điểm thuộc đường tròn (w) sao cho AE // MN. Chứng minh rằng: E, P, A’ thẳng hàng. b) Gọi F là giao điểm thứ hai của A’P với đường tròn (w) và I là tâm đường tròn ngoại tiếp tam giác AA’F. Chứng minh IF tiếp xúc với đường tròn ngoại tiếp tam giác BFC. + Cho tập hợp A = {1;2; . . . ; 101}, tô màu ít nhất 50 phần tử của A sao cho: nếu a và b thuộc A (a, b không nhất thiết phân biệt) được tô màu và a + b thuộc A thì a + b cũng được tô màu. Gọi S là tổng tất cả các số không được tô màu của A. Tìm giá trị lớn nhất của S. + Tìm tất cả n tự nhiên để 2^2^2^ . . .  ^2 (n số 2) – 2 viết được thành a^3 + b^3 + c^3 với a, b, c nguyên.
Đề thi HSG Toán 12 (vòng 1) năm 2020 - 2021 trường chuyên Nguyễn Du - Đắk Lắk
Thứ Tư ngày 09 tháng 09 năm 2020, trường THPT chuyên Nguyễn Du, tỉnh Đắk Lắk tổ chức kỳ thi chọn đội tuyển học sinh giỏi môn Toán lớp 12 năm học 2020 – 2021 vòng thi số 1. Đề thi HSG Toán 12 (vòng 1) năm 2020 – 2021 trường chuyên Nguyễn Du – Đắk Lắk được biên soạn theo dạng đề tự luận, đề thi gồm có 01 trang với 05 bài toán, thời gian học sinh làm bài thi là 180 phút. Trích dẫn đề thi HSG Toán 12 (vòng 1) năm 2020 – 2021 trường chuyên Nguyễn Du – Đắk Lắk : + Cho tứ giác lồi ABCD nội tiếp đường tròn (C). Gọi M, N, P lần lượt là giao điểm của các cặp đường thẳng AB và CD, AD và BC, AC và BD. Gọi I1, I2, I3, I4 lần lượt là tâm đường tròn bàng tiếp các tam giác ABN, BCM, CDN và ADM tương ứng với các đỉnh A, C, D và D. a) Chứng minh các điểm I1, I2, I3, I4 đồng viên. b) Gọi I là tâm đường tròn qua I1, I2, I3, I4. Chứng minh PI vuông góc với MN. + Tìm tất cả các hàm số f: R → R thỏa mãn: f(x + f(y)) – f(f(x) – x) = f(y) – f(x) + 2x + 2y với mọi x, y thuộc R. + Chứng minh rằng với mọi n thuộc Z+, luôn tồn tại m thuộc N sao cho: (√2 – 1)^n = √(m + 1) – √m.
Đề thi học sinh giỏi Toán THPT cấp tỉnh năm 2019 - 2020 sở GDĐT Hậu Giang
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi học sinh giỏi Toán THPT cấp tỉnh năm 2019 – 2020 sở GD&ĐT Hậu Giang; kỳ thi được diễn ra vào ngày 02 tháng 07 năm 2020; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học sinh giỏi Toán THPT cấp tỉnh năm 2019 – 2020 sở GD&ĐT Hậu Giang : + Trong đợt ứng phó đại dịch COVID – 19 vừa qua, ngành y tế của một tỉnh miền Tây đã chọn ngẫu nhiên một tổ gồm 3 nhân viên trong 6 nhân viên y tế dự phòng của tỉnh và 16 nhân viên y tế của các trung tâm y tế dự phòng cơ sở để thực hiện hành động chống dịch đột xuất. Tính xác suất để 3 nhân viên y tế được chọn có cả nhân viên y tế của tỉnh và nhân viên y tế của cơ sở. + Cho hình chóp S ABCD có đáy ABCD là hình vuông, SA vuông góc với mặt phẳng đáy, SA a 2 góc giữa đường thẳng SC và mặt phẳng đáy bằng 0 45. Gọi M là trung điểm của cạnh AB. Tính theo a khoảng cách h giữa hai đường thẳng DM và SB. + Trong mặt phẳng với hệ tọa độ Oxy, cho tứ giác ABCD nội tiếp trong đường tròn đường kính BD. Gọi H K lần lượt là hình chiếu vuông góc của điểm A trên các đường thẳng BC BD và E là giao điểm của hai đường thẳng HK và AC. Biết đường thẳng AC đi qua điểm M (3;2) và nhận n (1;-1) làm vectơ pháp tuyến. Tìm tọa độ các điểm E và A, biết điểm H (1;3), K(2;2) và hoành độ điểm A lớn hơn 2.
Đề thi học sinh giỏi Toán 12 THPT cấp tỉnh năm 2019 - 2020 sở GDĐT Quảng Nam
Thứ Tư ngày 10 tháng 06 năm 2020, sở Giáo dục và Đào tạo tỉnh Quảng Nam tổ chức kỳ thi tuyển chọn học sinh giỏi môn Toán lớp 12 hệ THPT cấp tỉnh năm học 2019 – 2020. Đề thi học sinh giỏi Toán 12 THPT cấp tỉnh năm 2019 – 2020 sở GD&ĐT Quảng Nam được biên soạn theo dạng đề trắc nghiệm, đề gồm 06 trang với 40 câu hỏi và bài toán, thời gian làm bài thi là 90 phút (không kể thời gian giám thị coi thi phát đề), đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học sinh giỏi Toán 12 THPT cấp tỉnh năm 2019 – 2020 sở GD&ĐT Quảng Nam : + Cắt tấm bìa hình tròn có bán kính bằng 1 (độ dày không đáng kể) theo đường gấp khúc SAQCPBS như hình 1, sau đó gấp phần đa giác còn lại theo các đoạn AB, BC, CA sao cho các điểm S, P, Q trùng nhau để được hình chóp đều có đáy là tam giác ABC như hình 2. Giá trị lớn nhất của thể tích khối chóp SABC bằng? + Trong không gian Oxyz, cho hai điểm AB, theo thứ tự thay đổi trên các tia Ox, Oy sao cho OA.OB = 9. Điểm S thuộc mặt phẳng (Ozx) sao cho hai mặt phẳng (SAB) và (SOB) cùng tạo với mặt phẳng (Oxy) một góc 30 độ. Gọi (a;0;c) là tọa độ điểm S. Tính giá trị của biểu thức P = a^4 + c^4 trong trường hợp thể tích khối chóp S.OAB đạt giá trị lớn nhất. [ads] + Đồ thị (C) của hàm số y = ax^3 + bx^2 + cx + 3a và đồ thị (C’) của hàm số y = 3ax^2 + 2bx + c (a, b, c thuộc R và a > 0) có đúng hai điểm chung khác nhau A, B và điểm A có hoành độ bằng 1. Các tiếp tuyến của (C) và (C’) tại điểm A trùng nhau; diện tích hình phẳng giới hạn bởi (C) và (C’) bằng 1. Giá trị của a + b + c bằng?