Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Giải nhanh GTLN - GTNN mô đun số phức với Elip và không Elip - Lục Trí Tuyên

Tài liệu gồm 19 trang tuyển tập một số dạng và phương pháp giải bài toán GTLN – GTNN mô đun số phức, tài liệu có các ví dụ minh họa kèm lời giải chi tiết. Nội 1. Hình dạng và thông số của Elip 2. Bài toán liên quan Bài toán chung: Cho M chuyển động trên Elip (E) và một điểm A cố định. Tìm GTLN, GTNN của AM Bài toán số phức tương ứng: Cho số phức z thoả mãn |z – z1| + |z – z2| = 2a với 2a > |z1 – z2|. Tìm GTLN, GTNN của P = |z – z0| Sự tương ứng ở đây gồm: + M là điểm biểu diễn z + F1, F2 tương ứng là điểm biểu diễn z1, z2 + A là điểm biểu diễn z0 3. Các dạng giải được + Bài toán 1. Phương trình (E) dạng chính tắc: x^2/a^2 + y^2/b^2 = 1 Bài toán số phức tương ứng: Cho số phức z thoả mãn |z – c| + |z + c| = 2a hoặc |z – ci| + |z + ci| = 2a (Elip đứng). Tìm GTLN, GTNN của P = |z – z0| + Bài toán 2. Elip không chính tắc nhưng A là trung điểm của F1F2 tức A là tâm Elip Bài toán số phức tương ứng: Cho số phức z thoả mãn |z – z1| + |z – z2| = 2a với 2a > |z1 – z2|. Tìm GTLN, GTNN của P = |z – z0| với đặc điểm nhận dạng z0 = (z1 + z2)/2 + Bài toán 3. Elip không có dạng chính tắc, A không là trung điểm của F1F2 nhưng A nằm trên các trục của Elip [ads] ELIP SUY BIẾN Bài toán: Cho số phức z thoả mãn |z – z1| + |z – z2| = 2a nhưng có |z1 – z2| = 2a. Tìm GTLN, GTNN của T = |z – z0| GTLN-GTNN CỦA MÔ ĐUN SỐ PHỨC KHÔNG ELIP + Dạng 1: Tìm |z| hoặc z thoả mãn phương trình z.f(|z|) = g(|z|) nghĩa là phương trình bậc nhất ẩn z chứa |z| + Dạng 2: Cho |z1| = m, |z2| = n và |az1 + bz2| = p. Tính q = |cz1 + dz2| + Dạng 3. Cho số phức z thỏa mãn |z – z0| = R. Tìm GTLN của P = a|z – z1| + b|z – z2| biết rằng z0 – z1 = -k(z0 – z2) (k > 0) và a, b ∈ R + Dạng 4. Cho số phức z thõa mãn |z + z0/z| ≤ k (k > 0) hay dạng tương đương |z^2 + z0| ≤ k|z|, (k > 0). Tìm GTLN, GTNN của T = |z| + Dạng 5. Cho số phức z thỏa mãn |z1.z – z2 = k > 0. Tìm GTLN, GTNN của T = |z – z0| + Dạng 6. Cho số phức z thỏa mãn |z – z1| = |z – z2|. Tìm GTNN của T = |z – z0| + Dạng 7. Cho hai số phức z1, z2 thỏa mãn |z1 – z1*| = R và |z2 – z2*| = |z2 – z3*|, với z1*, z2* và z3* cho trước. Tìm GTNN của T = |z1 – z2| Lời kết : Các bài toán trên có thể giải bằng phương pháp đại số bằng cách rút một ẩn theo ẩn còn lại từ giả thiết để thay vào biểu thức cần đánh giá thành hàm số dạng T = f(x). Sau đó tìm GTLN, GTNN của trên miền xác định của f(x). Các đánh giá đảm bảo chặt chẽ cần chứng tỏ có đẳng thức (dấu “=”) xảy ra. Để tránh phức tạp vấn đề tôi không trình bày ở đây. Tuy nhiên các bài toán tổng quát đã nêu đều đảm bảo điều đó.

Nguồn: toanmath.com

Đọc Sách

Kỹ thuật CHỌN trong trắc nghiệm tích phân và số phức - Trần Lê Quyền
Một nguyên tắc cơ bản khi xây dựng nên các bài toán đại số chính là: Thiết lập sự cân bằng giữa số ẩn số và số phương trình lập nên từ các dữ kiện. Lấy ý tưởng đó, bài viết này tổng hợp và giới thiệu vài cách xử lí nhanh một số bài toán số phức và tích phân bằng một kiểu chọn đặc biệt. Tôi cố tình không phân chia ra các đề mục để tách biệt giữa số phức và tích phân vì xét dưới góc nhìn này, chúng hoàn toàn giống nhau! [ads]
Hướng dẫn sử dụng máy tính cầm tay giải nhanh bài toán số phức - Trần Bá Hưng
Tài liệu gồm 40 trang hướng dẫn sử dụng máy tính cầm tay Casio và Vinacal để giải nhanh các bài toán số phức trong các đề thi thử THPT Quốc gia môn Toán. Các thủ thuật Casio được trình bày trong tài liệu được sử dụng để giải nhanh các dạng toán số phức sau: + Tính nhanh các phép toán cơ bản số phức + Biểu diễn hình học của số phức + Quỹ tích điểm biểu diễn của số phức + Cực trị của số phức + Phương trình số phức [ads]
Kỹ thuật tạo số phức liên hợp giải nhanh bài toán số phức vận dụng cao - Nguyễn Minh Tuấn
Tài liệu gồm 6 trang được biên soạn bởi tác giả Nguyễn Minh Tuấn hướng dẫn giải nhanh bài toán số phức vận dụng cao bằng kỹ thuật tạo số phức liên hợp kèm theo bài tập áp dụng. Nội dung tài liệu được chia thành 2 phần: + Phần 1. 9 ví dụ hướng dẫn kỹ thuật tạo số phức liên hợp để giải nhanh các bài toán số phức ở mức độ vận dụng cao (khó). + Phần 2. 51 bài tập vận dụng. Các bài toán được liệt kê trong tài liệu đều ở mức vận dụng cao, rất cao. Thông qua kỹ thuật nhỏ trên, tác giả Nguyễn Minh Tuấn hy vọng các em sẽ vận dụng linh hoạt các công thức biến đổi của số phức để tìm ra lời giải một cách ngắn gọn nhất. [ads] Trích dẫn tài liệu kỹ thuật tạo số phức liên hợp giải nhanh bài toán số phức vận dụng cao – Nguyễn Minh Tuấn: + Cho ba số phức a,b, c thỏa mãn a + b + c = 0 và |a| = |b| = |c| = 1. Đặt w = a^2 + b^2 + c^2. Hỏi khẳng định nào sau đây là đúng? A. w là số thực không âm. B. w = 0. C. w là số thuần ảo. D. w là số thực dương. + Cho số phức z tùy ý, xét hai số phức α = z^2 + z‾, β = z.z‾ + i(z − z‾). Khẳng định nào sau đây là đúng ? A. α là số thực, β là số thuần ảo. B. α là số thuần ảo, β là số thực. C. Cả hai số đều là số thực. D. Cả hai số đều là số thuần ảo. + Cho hai số phức z1, z2 thỏa mãn |z1| = |z2| = 1 và z1.z2 ≠ 1. Tìm phần ảo của số phức w = (z1 + z2)/(1+ z1z2)? A. Phần ảo bằng 1. B. Phần ảo bằng -1. C. Phần ảo bằng 0. D. Phần ảo lớn hơn.
Chuyên đề Số phức - Trần Đình Cư
giới thiệu đến thầy, cô và các em học sinh khối 12 tài liệu chuyên đề số phức do thầy Trần Đình Cư biên soạn, tài liệu gồm 305 trang cung cấp đầy đủ lý thuyết, dạng toán và bài tập tự luận – trắc nghiệm số phức, tất cả các bài tập trong chuyên đề số phức này đều có đáp án và lời giải chi tiết, ngoài ra chuyên đề còn cung cấp các thủ thuật giải nhanh số phức bằng máy tính cầm tay Casio, giúp học sinh tiết kiệm thời gian giải toán. Chuyên đề số phức bao gồm 10 chủ đề: Chủ đề 1. Các phép toán cơ bản: Gồm các phép toán cộng trừ, nhân chia, nâng lũy thừa, điều kiện bằng nhau của hai số phức. Chủ đề 2. Biểu diễn hình học các số phức. + Cách biểu diễn hình học của số phức z = a + bi (a, b thuộc R) trong mặt phẳng phức. + Biểu diễn hình học của z, -z, z‾: M(z) và M(-z) đối xứng với nhau qua gốc tọa độ, M(z) và M(z‾) đối xứng với nhau qua trục Ox. + Biểu diễn hình học của z + z’, z – z’, kz (k thuộc R). + Với M, A, B lần lượt biểu diễn số phức z, a, b thì: OM = |z|; AB = |b – a|. Chủ đề 3. Tìm tập hợp điểm. + Tập hợp các điểm biểu diễn số phức z thỏa mãn điều kiện: |z – a| = |z – b|, |z – a| + |z – b| = k. + Giả sử M và M’ lần lượt biểu diễn các số phức z = x + iy và w = f(z) = u + iv, nếu biết một hệ thức giữa x, y ta tìm được một hệ thức giữa u, v và suy ra được tập hợp các điểm M’, nếu biết một hệ thức giữa u, v ta tìm được một hệ thức giữa x, y và suy ra được tập hợp các điểm M. Chủ đề 4. Chứng minh đẳng thức. [ads] Chủ đề 5. Số phức thỏa điều kiện. + Tìm số phức z = x + iy thật ra là tìm phần thực x và phần ảo y của nó. + Trong trường hợp tìm số phức có môđun lớn nhất, nhỏ nhất ta làm như sau: Bước 1: Tìm tập hợp điểm (H) các điểm biểu diễn của z thỏa mãn điều kiện. Bước 2: Tìm số phức z tương ứng với điểm biểu diễn M thuộc (H) sao cho khoảng cách OM có giá trị lớn nhất (hoặc nhỏ nhất). Chủ đề 6. Phương trình số phức. + Bài toán 1. Phương trình quy về phương trình bậc nhất số phức. + Bài toán 2. Căn bậc hai số phức, phương trình bậc hai và phương trình quy về phương trình bậc hai. + Bài toán 3. Phương trình bậc ba. + Bài toán 4. Phương trình bậc bốn số phức. Chủ đề 7. Hệ phương trình số phức. + Giải hệ phương trình số phức bằng định thức. + Ngoài phương pháp định thức trên ta có thể sử dụng phương pháp cộng đại số, phương pháp rút thế. + Ngoài ra ta còn có thể dựa vào tính chất tập hợp điểm số phức để giải và biện luận hệ phương trình. Chủ đề 8. Dạng lượng giác số phức. + Bài toán 1. Viết số phức dưới dạng lượng giác. + Bài toán 2: Áp dụng công thức Moivre để thực hiện các phép tính. + Bài toán 3. Tìm môđun và acgumen của số phức. + Bài toán 4. Áp dụng công thức Moavrơ để tính căn bậc n của số phức. Chủ đề 9. Ứng dụng số phức. + Bài toán 1. Sử dụng số phức vào giải hệ phương trình. + Bài toán 2: Ứng dụng số phức vào chứng minh các công thức, đẳng thức lượng giác. + Bài toán 3: Ứng dụng vào chứng minh bất đẳng thức. + Bài toán 4. Ứng dụng giải toán khai triển hay tính tổng nhị thức Niutơn. + Bài toán 5. Ứng dụng giải toán đa thức và phép chia đa thức. Chủ đề 10. Tuyển chọn 100 bài tập số phức vận dụng và vận dụng bậc cao.