Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Hướng dẫn giải các dạng toán dãy số, cấp số cộng và cấp số nhân - Đặng Việt Đông

Tài liệu gồm 90 phân dạng và hướng dẫn giải các dạng toán về chuyên đề dãy số, cấp số cộng và cấp số nhân, phục vụ cho kỳ thi THPT Quốc gia 2017 – 2018. Tất cả các bài toán đều có đáp án và lời giải chi tiết. Phần 1. Dãy số A – Lý thuyết B – Bài tập Dạng 1 . Số hạng của dãy số Dạng 2 . Dãy số đơn điệu, dãy số bị chặn Phần 2. Cấp số cộng A – Lý thuyết B – Bài tập Dạng 1 . Xác định cấp số cộng và các yếu tố của cấp số cộng Phương pháp : + Dãy số (un) là một cấp số cộng ⇔ un+1 – un = d không phụ thuộc vào n và d là công sai + Để xác định một cấp số cộng, ta cần xác định số hạng đầu và công sai. Do đó, ta thường biểu diễn giả thiết của bài toán qua u1 và d Dạng 2 . Tìm điều kiện để dãy số lập thành cấp số cộng: Ba số a, b, c theo thứ tự đó lập thành cấp số cộng ⇔ a + c = 2b [ads] Phần 3. Cấp số nhân A – Lý thuyết B – Bài tập Dạng 1 . Xác định cấp số nhân và các yếu tố của cấp số nhân Phương pháp : + Dãy số (un) là một cấp số nhân ⇔ un+1/un = q không phụ thuộc vào n và q là công bội + Để xác định một cấp số nhân, ta cần xác định số hạng đầu và công bội. Do đó, ta thường biểu diễn giả thiết của bài toán qua u1 và q Dạng 2 . Tìm điều kiện để dãy số lập thành cấp số nhân: Ba số a, b, c theo thứ tự đó lập thành cấp số nhân ⇔ ac = b^2

Nguồn: toanmath.com

Đọc Sách

Tài liệu chủ đề cấp số cộng
Tài liệu gồm 34 trang, bao gồm kiến thức trọng tâm, hệ thống ví dụ minh họa và bài tập trắc nghiệm tự luyện chủ đề cấp số cộng, có đáp án và lời giải chi tiết; giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 3. I. KIẾN THỨC TRỌNG TÂM 1) Định nghĩa. 2) Số hạng tổng quát. 3) Tính chất các số hạng của cấp số cộng. 4) Tổng n số hạng đầu của một cấp số cộng. II. PHÂN DẠNG TOÁN VÀ HỆ THỐNG VÍ DỤ MINH HỌA Dạng 1. Bài toán liên quan đến tính chất của cấp số cộng. Dạng 2. Bài toán liên quan đến tổng n số hạng của cấp số cộng. BÀI TẬP TỰ LUYỆN. ĐÁP ÁN VÀ LỜI GIẢI BẢI TẬP TỰ LUYỆN.
Tài liệu chủ đề dãy số
Tài liệu gồm 31 trang, bao gồm kiến thức trọng tâm, hệ thống ví dụ minh họa và bài tập trắc nghiệm tự luyện chủ đề dãy số, có đáp án và lời giải chi tiết; giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 3. I. KIẾN THỨC TRỌNG TÂM 1) Định nghĩa dãy số. 2) Định nghĩa dãy số hữu hạn. 3) Dãy số tăng và dãy số giảm. 4) Dãy số bị chặn. II. PHÂN DẠNG TOÁN VÀ HỆ THỐNG VÍ DỤ MINH HỌA + Dạng 1. Xác định dãy số. + Dạng 2. Xét tính đơn điệu của dãy số. + Dạng 3. Xét tính bị chặn của dãy số. BÀI TẬP TỰ LUYỆN. ĐÁP ÁN VÀ LỜI GIẢI BẢI TẬP TỰ LUYỆN.
Tài liệu chủ đề phương pháp quy nạp toán học
Tài liệu gồm 10 trang, bao gồm kiến thức trọng tâm, hệ thống ví dụ minh họa và bài tập trắc nghiệm tự luyện chủ đề phương pháp quy nạp toán học, có đáp án và lời giải chi tiết; giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 3. I. KIẾN THỨC TRỌNG TÂM 1) Để chứng minh một mệnh đề P(n) đúng với mọi n N* thì ta thực hiện theo các bước sau đây: + Kiểm tra mệnh đề đúng với n 1. + Giả sử mệnh đề đã đúng với n k đưa ra được biểu thức của P k ta gọi là giả thiết quy nạp. + Với giả thiết P k đã đúng, ta chứng minh mệnh đề cũng đúng với n k 1. 2) Để chứng minh một mệnh đề P(n) đúng với mọi n ≥ p (p là số một số tự nhiên) thì ta thực hiện như sau: + Kiểm tra mệnh đề đúng với n p. + Giả sử mệnh đề đã đúng với n k đưa ra được biểu thức của P k ta gọi là giả thiết quy nạp. + Với giả thiết P k đã đúng, ta chứng minh mệnh đề cũng đúng với n k 1. II. HỆ THỐNG VÍ DỤ MINH HỌA
Tài liệu ôn thi HSG Quốc gia môn Toán chủ đề dãy số - Nguyễn Hoàng Vinh
Tài liệu gồm 91 trang, được biên soạn bởi tác giả Nguyễn Hoàng Vinh, hướng dẫn ôn thi HSG Quốc gia môn Toán chủ đề dãy số. Phần 1 : 1. Tính giới hạn theo định nghĩa, định lý kẹp, định lý Weierstrass, dùng công thức tổng quát. 2. Các tính chất, đánh giá xung quanh dãy số. Phần 2 : Định nghĩa giới hạn, tiêu chuẩn Cauchy và bài tập lý thuyết. Phần 3 : Các bài toán về giới hạn và đánh giá trên dãy số.