Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

123 bài toán hàm số bậc nhất và đường thẳng Lương Tuấn Đức

Nội dung 123 bài toán hàm số bậc nhất và đường thẳng Lương Tuấn Đức Bản PDF - Nội dung bài viết Sản phẩm 123 bài toán hàm số bậc nhất và đường thẳng Lương Tuấn Đức Sản phẩm 123 bài toán hàm số bậc nhất và đường thẳng Lương Tuấn Đức Trong lĩnh vực Toán học sơ cấp nói chung và Đại số phổ thông nói riêng, hàm số và đồ thị là những dạng toán cơ bản nhưng rất thú vị. Chúng có phạm vi rộng lớn, liên kết chặt chẽ với nhiều phần khác của toán học sơ cấp và hiện đại. Ở Việt Nam, kiến thức về hàm số và đồ thị đóng vai trò quan trọng trong giáo dục, được giảng dạy trong chương trình sách giáo khoa từ lớp 7, tiếp tục qua các lớp 9, 10, 11, 12 cùng với các kiến thức liên quan. Các kỹ năng về hàm số, đồ thị được rèn luyện đều đặn, bài bản và có hệ thống để hữu ích không chỉ trong môn Toán mà còn phục vụ cho các môn khoa học tự nhiên khác như Hóa học, Vật lý, Địa lý, Sinh học. Trong chương trình Đại số lớp 9 THCS, hàm số và đồ thị đóng vai trò quan trọng trong các đề thi kiểm tra, đề thi tuyển sinh lớp 10 THPT và các trường chuyên. Các bài toán về hàm số và đồ thị tạo cơ sở cho kiến thức chính trong các lớp 10, 12, bao gồm cả hàm số bậc cao và bài toán hình học giải tích. Trong tác phẩm về hàm số và đồ thị, tác giả tập trung vào các bài toán khảo sát biến thiên, vẽ đồ thị của hàm số bậc nhất (đường thẳng), vị trí tương đối giữa các đường thẳng, cũng như vị trí tương đối giữa đường thẳng và đường cong. Ngoài ra, có những bài toán kết nối với yếu tố lượng giác và hình học giải tích. Đồng thời, tác giả cố gắng mở rộng, nâng cao từng bài toán theo nội dung chính về hàm số bậc THPT. Điều này giúp phát triển tư duy hàm số, tư duy hình học giải tích cho học sinh THCS và tạo cơ sở cho các kỳ thi đầy cam go như kỳ thi tuyển sinh đại học – cao đẳng, kỳ thi THPT Quốc gia. Tóm lại, việc nghiên cứu đường thẳng và hàm số không chỉ giúp học sinh hiểu sâu hơn về toán học mà còn giúp họ áp dụng kiến thức vào các môn khoa học khác một cách sáng tạo và linh hoạt.

Nguồn: sytu.vn

Đọc Sách

Tài liệu luyện thi vào môn Toán phần Hình học Vũ Xuân Hưng
Nội dung Tài liệu luyện thi vào môn Toán phần Hình học Vũ Xuân Hưng Bản PDF - Nội dung bài viết Tài liệu luyện thi vào môn Toán phần Hình học của thầy Vũ Xuân Hưng Tài liệu luyện thi vào môn Toán phần Hình học của thầy Vũ Xuân Hưng Tài liệu luyện thi này bao gồm 122 trang, được biên soạn bởi thầy giáo Vũ Xuân Hưng. Trong tài liệu, thầy Hưng tổng hợp kiến thức quan trọng cần nhớ, các dạng bài tập và hướng dẫn giải chi tiết. Tài liệu cũng tuyển chọn các bài tập từ cơ bản đến nâng cao về các chủ đề Hình học phẳng ở bậc trung học cơ sở. Đây sẽ là nguồn tài liệu hữu ích giúp học sinh ôn tập chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 môn Toán. Phần Chuyên đề 7 - Hình học phẳng: A. Kiến thức cần nhớ: Hệ thức lượng trong tam giác vuông. Các tỉ số lượng giác của góc nhọn trong tam giác vuông. Góc và đường tròn. B. Các dạng bài tập cơ bản: Dạng Toán lớp 1: Chứng minh tứ giác nội tiếp đường tròn. Dạng Toán lớp 2: Chứng minh tứ giác đã cho là hình bình hành, hình thoi, hình chữ nhật, hình vuông. Dạng Toán lớp 3: Chứng minh đường thẳng là tiếp tuyến của đường tròn. Dạng Toán lớp 4: Chứng minh ba điểm thẳng hàng. Dạng Toán lớp 5: Chứng minh tỉ lệ độ dài đoạn thẳng. Dạng Toán lớp 6: Chứng minh đường thẳng là tiếp tuyến của đường tròn. Đặc biệt, tài liệu còn bao gồm tuyển tập đề thi tuyển sinh vào lớp 10 môn Toán, giúp học sinh ôn tập kỹ lưỡng và tự tin trước kỳ thi sắp tới. Đừng bỏ lỡ cơ hội nâng cao kiến thức và kỹ năng giải bài tập của mình!
Các bài toán chứng minh ba điểm thẳng hàng ba đường thẳng đồng quy
Nội dung Các bài toán chứng minh ba điểm thẳng hàng ba đường thẳng đồng quy Bản PDF - Nội dung bài viết Các bài toán chứng minh ba điểm thẳng hàng ba đường thẳng đồng quy Các bài toán chứng minh ba điểm thẳng hàng ba đường thẳng đồng quy Bộ tài liệu này bao gồm 80 trang, được biên soạn bởi thầy giáo Nguyễn Công Lợi, hướng dẫn phương pháp và chọn lọc các bài toán chứng minh ba điểm thẳng hàng - ba đường thẳng đồng quy. Đây là loại bài toán thường gặp trong các bài toán hình học với nhiều sắc thái và biểu cảm khác nhau.
Tài liệu luyện thi vào môn Toán phần Đại số Vũ Xuân Hưng
Nội dung Tài liệu luyện thi vào môn Toán phần Đại số Vũ Xuân Hưng Bản PDF - Nội dung bài viết Tài liệu luyện thi vào môn Toán phần Đại số Vũ Xuân HưngCHUYÊN ĐỀ 1 – BIỂU THỨC CHỨA CĂN BẬC HAICHUYÊN ĐỀ 2 – HÀM SỐ BẬC NHẤT Tài liệu luyện thi vào môn Toán phần Đại số Vũ Xuân Hưng Tài liệu luyện thi vào môn Toán phần Đại số Vũ Xuân Hưng là tài liệu tổng hợp kiến thức cần nhớ, các dạng bài tập và hướng dẫn giải từ cơ bản đến nâng cao của chủ đề Đại số bậc THCS. Tài liệu gồm 141 trang, được biên soạn bởi thầy giáo Vũ Xuân Hưng, giúp học sinh ôn tập chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 môn Toán. CHUYÊN ĐỀ 1 – BIỂU THỨC CHỨA CĂN BẬC HAI I – KIẾN THỨC CẦN NHỚ: Định nghĩa căn bậc hai. Các công thức vận dụng. Định nghĩa căn bậc ba. Tính chất của căn bậc ba. II – CÁC DẠNG BÀI TẬP CƠ BẢN: Dạng 1: Tìm điều kiện để biểu thức có nghĩa. Dạng 2: Căn bậc hai số học. Dạng 3: Tính giá trị của biểu thức. Dạng 4: Phân tích đa thức thành nhân tử. ... (còn nhiều dạng bài tập khác) III – BÀI TẬP TỰ LUYỆN. CHUYÊN ĐỀ 2 – HÀM SỐ BẬC NHẤT I – KIẾN THỨC CẦN NHỚ: Hàm số bậc nhất. Khái niệm hàm số bậc nhất. Tính chất. ... II – CÁC DẠNG BÀI TẬP CƠ BẢN: Dạng 1: Xác định hàm số đã cho là hàm đồng biến – nghịch biến. Dạng 2: Vẽ đồ thị của hàm số bậc nhất. ... (còn nhiều dạng bài tập khác) III – BÀI TẬP TỰ LUYỆN. Đồng hành cùng học sinh trong việc ôn tập và chuẩn bị cho kỳ thi tuyển sinh, tài liệu luyện thi của thầy giáo Vũ Xuân Hưng sẽ giúp họ nắm vững kiến thức và rèn luyện kỹ năng giải bài tập một cách hiệu quả.
Các bài toán chứng minh cực trị hình học
Nội dung Các bài toán chứng minh cực trị hình học Bản PDF - Nội dung bài viết Cùng khám phá bài toán chứng minh cực trị hình học! Cùng khám phá bài toán chứng minh cực trị hình học! Tài liệu chứa 50 trang với hướng dẫn chi tiết về cách giải các bài toán chứng minh cực trị hình học, loại dạng toán thường gặp trong các bài tập. Đây sẽ là nguồn thông tin hữu ích giúp bạn nắm vững phương pháp giải và áp dụng chúng một cách hiệu quả.