Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tóm tắt lý thuyết, các dạng toán và bài tập môn Toán 8

Tài liệu gồm 551 trang, tóm tắt lý thuyết, các dạng toán và bài tập môn Toán 8, có đáp án và lời giải chi tiết. Mục lục : Phần I Đại số. Chương 1. Phép nhân và phép chia đa thức 2. 1. Nhân đơn thức với đa thức 2. 2. Nhân đa thức với đa thức 8. 3. Những hằng đẳng thức đáng nhớ (phần 1) 13. 4. Những hằng đẳng thức đáng nhớ (phần 2) 22. 5. Những hằng đẳng thức đáng nhớ (phần 3) 28. 6. Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung 34. 7. Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức 41. 8. Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử 52. 9. Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp 64. 10. Chia đơn thức cho đơn thức 73. 11. Chia đa thức cho đơn thức 81. 12. Chia đa thức một biến đã sắp xếp 88. 13. Ôn tập chương 1 101. Chương 2. Phân thức đại số 118. 1. Phân thức đại số 118. 2. Tính chất cơ bản của phân thức 124. 3. Rút gọn phân thức 134. 4. Quy đồng mẫu thức nhiều phân thức 139. 5. Phép cộng các phân thức đại số 146. 6. Phép trừ các phân thức đại số 156. 7. Phép nhân các phân thức đại số 165. 8. Phép chia các phân thức đại số 171. 9. Biến đổi biểu thức hữu tỉ. Giá trị của phân thức 175. 10. Ôn tập chương II (phần 1) 184. 11. Ôn tập chương II (phần 2) 191. Chương 3. Phương trình bậc nhất một ẩn 196. 1. Mở đầu về phương trình 196. 2. Phương trình bậc nhất một ẩn và cách giải 202. 3. Phương trình đưa được về dạng ax + b = 0 214. 4. Phương trình tích 228. 5. Phương trình chứa ẩn ở mẫu 238. 6. Giải bài toán bằng cách lập phương trình 246. Chương 4. Bất phương trình 254. 1. Liên hệ giữa thứ tự và phép cộng 254. 2. Liên hệ giữa thứ tự và phép nhân 260. 3. Bất phương trình một ẩn 264. 4. Bất phương trình bậc nhất một ẩn 269. 5. Phương trình chứa dấu giá trị tuyệt đối 282. 6. Ôn tập chương IV 297. Phần II Hình học. Chương 1. Tứ giác 306. 1. Tứ giác 306. 2. Hình thang 312. 3. Hình thang cân 318. 4. Đường trung bình của tam giác, của hình thang 324. 5. Đối xứng trục 331. 6. Hình bình hành 337. 7. Đối xứng tâm 344. 8. Hình chữ nhật 349. 9. Đường thẳng song song với một đường thẳng cho trước 358. 10. Hình thoi 364. 11. Hình vuông 371. 12. Ôn tập chương 1 378. Chương 2. Đa giác. Diện tích đa giác 386. 1. Đa giác. Đa giác đều 386. 2. Diện tích hình chữ nhật 392. 3. Diện tích tam giác 398. 4. Diện tích hình thang 404. 5. Diện tích hình thoi 410. 6. Diện tích đa giác 414. 7. Ôn tập chương II 417. Chương 3. Tam giác đồng dạng 422. 1. Định lý Ta-lét 422. 2. Định lý đảo và hệ quả của định lý Ta-lét 428. 3. Tính chất của đường phân giác của tam giác 436. 4. Khái niệm hai tam giác đồng dạng 443. 5. Trường hợp đồng dạng thứ nhất 449. 6. Trường hợp đồng dạng thứ hai 453. 7. Trường hợp đồng dạng thứ ba 458. 8. Các trường hợp đồng dạng của tam giác vuông 463. 9. Ôn tập chương III 469. Chương 4. Hình lăng trụ đứng. Hình chóp đều 479. 1. Hình hộp chữ nhật 479. 2. Thể tích của hình hộp chữ nhật 488. 3. Hình lăng trụ đứng 494. 4. Diện tích xung quanh và thể tích hình lăng trụ đứng 503. 5. Hình chóp đều và hình chóp cụt đều 511. 6. Diện tích xung quanh và thể tích của hình chóp đều 517. 7. Ôn tập chương 4 523. 8. Đề kiểm tra chương 4 528.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề trường hợp đồng dạng thứ hai
Tài liệu gồm 11 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề trường hợp đồng dạng thứ hai, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 3: Tam giác đồng dạng. I. TÓM TẮT LÝ THUYẾT II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1. Chứng minh hai tam giác đồng dạng. Phương pháp giải: + Bước 1: Xét hai tam giác, chọn ra hai góc bằng nhau và chứng minh (nếu cần). + Bước 2: Lập tỉ số các cạnh tạo nên mỗi góc đó, rồi chứng minh chúng bằng nhau. + Bước 3: Từ đó, chứng minh hai tam giác đồng dạng. Dạng 2. Sử dụng các trường hợp đồng dạng thứ hai để tính độ dài các cạnh hoặc chứng minh các góc bằng nhau. Phương pháp giải: Sử dụng trường hợp đồng dạng thứ hai (nếu cần) để chứng minh hai tam giác đồng dạng, từ đó suy ra các cặp góc tương ứng bằng nhau hoặc cặp cạnh tương ứng còn lại bằng nhau.
Chuyên đề trường hợp đồng dạng thứ nhất
Tài liệu gồm 09 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề trường hợp đồng dạng thứ nhất, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 3: Tam giác đồng dạng. I. TÓM TẮT LÝ THUYẾT II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1. Chứng minh hai tam giác đồng dạng. Phương pháp giải: Để chứng minh hai tam giác đồng dạng, ta lập tỉ số các cạnh tương ứng của hai tam giác và chứng minh chúng bằng nhau, từ đó ta được điều phải chứng minh. Dạng 2. Sử dụng trường hợp đồng dạng thứ nhất để tính độ dài các cạnh hoặc chứng minh các góc bằng nhau. Phương pháp giải: Sử dụng trường hợp đồng dạng thứ nhất (nếu cần) để chứng minh hai tam giác đồng dạng, từ đó suy ra các cặp góc tương ứng bằng nhau.
Chuyên đề khái niệm hai tam giác đồng dạng
Tài liệu gồm 11 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề khái niệm hai tam giác đồng dạng, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 3: Tam giác đồng dạng. I. KIẾN THỨC CƠ BẢN II. DẠNG BÀI TẬP CƠ BẢN Dạng 1. Vẽ tam giác đồng dạng với tam giác cho trước. Chứng minh hai tam giác đồng dạng. 1. Vẽ tam giác đồng dạng với tam giác cho trước. + Xác định tỉ số đồng dạng. + Kẻ đường thẳng song song với một cạnh của tam giác. 2. Chứng minh hai tam giác đồng dạng. + Sử dụng định nghĩa hoặc định lí nhận biết hai tam giác đồng dạng. Dạng 2: Tính độ dài cạnh, tỉ số đồng dạng thông qua các tam giác đồng dạng. Dạng 3: Chứng minh đẳng thức cạnh thông qua các tam giác đồng dạng.
Chuyên đề tính chất đường phân giác của tam giác
Tài liệu gồm 11 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề tính chất đường phân giác của tam giác, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 3: Tam giác đồng dạng. I. KIẾN THỨC CƠ BẢN 1. Định lý: Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề hai đoạn ấy. 2. Chú ý: + Định lý vẫn đúng với đối với đường phân giác góc ngoài của tam giác. + Các định lý trên có định lý đảo. II. BÀI TẬP MINH HỌA A. DẠNG BÀI CƠ BẢN DẠNG 1. Tính độ dài đoạn thẳng. + Áp dụng tính chất đường phân giác, lập tỉ lệ thức giữa các đoạn thẳng và sử dụng kĩ thuật đại số hóa hình học. + Áp dụng định lí Py-ta-go. DẠNG 2.Tính tỉ số độ dài, tỉ số diện tích hai tam giác. + Áp dụng tính chất đường phân giác, lập tỉ lệ thức giữa các đoạn thẳng. + Sử dụng kĩ thuật đại số hóa hình học. Công thức và kết quả thu được từ công thức tính diện tích tam giác. B. DẠNG BÀI NÂNG CAO