Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi khảo sát Toán 9 tháng 01 năm 2022 trường THCS Ngọc Thụy - Hà Nội

Thứ Năm ngày 20 tháng 01 năm 2022, trường THCS Ngọc Thụy, quận Long Biên, thành phố Hà Nội tổ chức kì thi khảo sát chất lượng môn Toán lớp 9 tháng 01 năm học 2021 – 2022. Đề thi khảo sát Toán 9 tháng 01 năm 2022 trường THCS Ngọc Thụy – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút (không kể thời gian giao đề). Trích dẫn đề thi khảo sát Toán 9 tháng 01 năm 2022 trường THCS Ngọc Thụy – Hà Nội : + Giải bài toán sau bằng cách lập phương trình: Một mảnh đất hình chữ nhật có chu vi là 120m. Nếu tăng chiều rộng 5m và giảm chiều dài đi 25% thì chu vi mảnh đất giảm đi 10m. Tính diện tích của mảnh đất hình chữ nhật ban đầu? + Hằng năm có một số nơi cứ mỗi độ xuân về, mọi người lại sửa soạn đón chào năm mới cùng với việc chuẩn bị cỗ bàn để cúng gia tiên, tiễn đưa ông táo về trời … thì nhà nào cũng trồng một cây nêu trước cổng nhà. Phong tục này đã được người dân Việt duy trì từ bao đời nay. Giả sử một cây nêu trồng thẳng đứng vuông góc với mặt đất (bỏ qua độ cong của phần ngọn), mặt trời chiếu xuống tạo bóng của cây nêu trên mặt đất cách gốc cây 4,6m , tia nắng mặt trời chiếu xuống hợp với mặt đất một góc o 53. Tính chiều cao của cây nêu? (Kết quả làm tròn đến hàng phần nguyên). + Cho nửa đường tròn tâm O với bán kính R, đường kính AB. Trên nửa mặt phẳng bờ là đường thẳng AB chứa nửa đường tròn, kẻ tiếp tuyến Ax tại A của nửa đường tròn. Xét điểm M thay đổi trên tia Ax, M ≠ A, kẻ tiếp tuyến MC với nửa đường tròn (O), đường thẳng MO cắt nửa (O) tại D và cắt AC tại E. 1) Chứng minh rằng bốn điểm M, A, O, C cùng thuộc một đường tròn. 2) Chứng minh MD.EA = MA.ED. 3) Từ O kẻ đường thẳng song song với AC cắt MC tại K. Xác định vị trí của M để tích OD MK nhỏ nhất, tìm giá trị nhỏ nhất đó theo R.

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra Toán 9 (chuyên) đợt 2 năm 2023 - 2024 trường chuyên KHTN - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra kiến thức môn Toán 9 (Toán chuyên) đợt 2 năm học 2023 – 2024 trường THPT chuyên KHTN, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 10 tháng 03 năm 2024. Trích dẫn Đề kiểm tra Toán 9 (chuyên) đợt 2 năm 2023 – 2024 trường chuyên KHTN – Hà Nội : + Tìm các số tự nhiên n sao cho 3n + n2 + 3 là bình phương của một số tự nhiên. + Cho tam giác ABC có BC là cạnh nhỏ nhất. Trên cạnh AC, AB lấy các điểm E, F sao cho EBC = FCB = BAC. Tiếp tuyến tại E và F của đường tròn (J) ngoại tiếp tam giác AEF giao nhau tại Q. BE giao CF tại K. a) Chứng minh rằng E, F, Q, K cùng thuộc một đường tròn. b) Chứng minh rằng JB = JC. c) QK giao AB, AC lần lượt tại T, S. Chứng minh rằng QT = KS. + Cho n là số nguyên dương. Ban đầu, trên một bảng trắng có viết đúng (n + 1)2 số nguyên dương phân biệt là các ước của 10n. Mỗi bước ta chọn 2 số a, b phân biệt bất kỳ trên bảng, sau đó xóa 2 số này và viết thêm 2 số (bằng nhau) có giá trị là ước chung lớn nhất của a và b. Tiếp tục thực hiện như vậy cho đến khi tất cả các số trên bảng bằng nhau. Tìm giá trị nhỏ nhất của các bước thực hiện có thể có.
Đề kiểm tra Toán 9 (chung) đợt 2 năm 2023 - 2024 trường chuyên KHTN - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra kiến thức môn Toán 9 (Toán chung) đợt 2 năm học 2023 – 2024 trường THPT chuyên KHTN, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 09 tháng 03 năm 2024. Trích dẫn Đề kiểm tra Toán 9 (chung) đợt 2 năm 2023 – 2024 trường chuyên KHTN – Hà Nội : + Chứng minh rằng không tồn tại các số nguyên x, y thỏa mãn: 7×2 – 30xy + 7y2 = 4(x + y) + 932024. + Với các số thực dương a và b thỏa mãn a + b = 2, tìm giá trị lớn nhất của biểu thức P. + Cho tam giác ABC nội tiếp (O), ngoại tiếp (I). (I) tiếp xúc với AC, AB lần lượt tại B, F. P là điểm bất kì nằm trên (I) và không nằm trong tam giác AEF. (J), (K) lần lượt là đường tròn ngoại tiếp tam giác BPF, CPE. (J) giao (K) tại M khác P. a) Chứng minh rằng EPF = 90° – 1/2.BAC. b) Chứng minh rằng B, C, I, M cùng thuộc một đường tròn. c) Gọi L là điểm chính giữa cung BC không chứa A của (O). Chứng minh rằng L, I, J, K cùng thuộc một đường tròn.
Đề khảo sát Toán 9 lần 1 năm 2023 - 2024 trường THCS Lê Quý Đôn - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng học sinh môn Toán 9 lần 1 năm học 2023 – 2024 trường THCS Lê Quý Đôn, quận Hà Đông, thành phố Hà Nội. Trích dẫn Đề khảo sát Toán 9 lần 1 năm 2023 – 2024 trường THCS Lê Quý Đôn – Hà Nội : + Một đội sản xuất phải làm 200 sản phẩm trong một thời gian qui định. Trong 4 ngày đầu họ đã thực hiện theo đúng kế hoạch, những ngày còn lại họ đã làm vượt mức mỗi ngày 10 sản phẩm nên đã hoàn thành công việc sớm hơn 2 ngày. Hỏi theo kế hoạch mỗi ngày đội phải làm bao nhiêu sản phẩm? + Một máy bay cất cánh theo phương có góc nghiêng so với mặt đất là 18°. Hỏi muốn đạt độ cao 3000m máy bay phải bay đoạn đường là bao nhiêu mét? (Kết quả làm tròn đến m). + Từ điểm A ở ngoài đường tròn (O;R) vẽ hai tiếp tuyến AB, AC (B, C là các tiếp điểm) và cát tuyến ADE thuộc nửa mặt phẳng bờ là đường thẳng OA không chứa điểm B của đường tròn (O). Gọi H là giao điểm của OA và BC. 1) Chứng minh bốn điểm A, B, O, C cùng thuộc một đường tròn. 2) Chứng minh AO vuông góc BC tại H và AH.AO = AD.AE. 3) Đường thẳng đi qua điểm D và song song với đường thẳng BE cắt AB, BC lần lượt tại I, K. Chứng minh tứ giác OHDE nội tiếp và D là trung điểm của IK.
Đề khảo sát lần 1 Toán 9 năm 2023 - 2024 trường THCS Nguyễn Trãi - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng lần 1 môn Toán 9 năm học 2023 – 2024 trường THCS Nguyễn Trãi, quận Ba Đình, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 02 tháng 03 năm 2024. Trích dẫn Đề khảo sát lần 1 Toán 9 năm 2023 – 2024 trường THCS Nguyễn Trãi – Hà Nội : + Giải bài toán bằng cách lập hệ phương trình: Hai xí nghiệp theo kế hoạch phải làm 720 dụng cụ. Nhờ sắp xếp hợp lý dây chuyền sản xuất nên thực tế xí nghiệp I vượt mức 10% kế hoạch, xí nghiệp II vượt mức 12% kế hoạch, do đó cả hai xí nghiệp đã làm được 800 dụng cụ. Tính số dụng cụ mỗi xí nghiệp phải làm theo kế hoạch. + Cho đường tròn (O) và điểm M nằm ngoài ngoài đường tròn. Kẻ tiếp tuyến MA, MB với (O) tại tiếp điểm A, B. Một đường thẳng d đi qua M cắt (O) tại C, D (MC < MD và tia MC nằm giữa hai tia MB, MO). I là trung điểm của đoạn thẳng CD. a) Chứng minh: Tứ giác MAOB là tứ giác nội tiếp. b) Chứng minh: MA2 = MC.MD. c) Cho BI cắt (O) tại điểm thứ hai là E. Chứng minh AE // CD. d) Qua I kẻ đường thẳng song song với BD cắt AB tại K. Chứng minh CK vuông góc BO.