Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022 2023 sở GD ĐT Hà Nam

Nội dung Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022 2023 sở GD ĐT Hà Nam Bản PDF - Nội dung bài viết Sytu giới thiệu Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022 - 2023 sở GD ĐT Hà Nam Sytu giới thiệu Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022 - 2023 sở GD ĐT Hà Nam Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 9 THCS năm học 2022 - 2023 của sở Giáo dục và Đào tạo UBND tỉnh Hà Nam. Đề thi sẽ được thi hình thức tự luận với 06 bài toán, thời gian làm bài 150 phút. Đề thi sẽ đi kèm đáp án, lời giải chi tiết và bảng hướng dẫn chấm điểm để giúp các em tự kiểm tra và tự đánh giá kết quả của mình. Dưới đây là một số câu hỏi mẫu trong Đề học sinh giỏi cấp tỉnh Toán lớp 9 năm 2022 - 2023 của sở GD&ĐT Hà Nam: 1. Cho parabol P : y = x^2 và hai điểm A(2,4) và B(8,8) nằm trên đồ thị của P. Gọi M là điểm thay đổi trên P và có hoành độ là m. Tìm giá trị của m để diện tích tam giác ABM là lớn nhất. 2. Cho đường tròn (O;R) có đường kính AB. Gọi C là điểm sao cho tam giác ABC là nhọn. Các đường thẳng CA, CB cắt đường tròn (O) tại các điểm D, E. Trên cung AB không chứa D, lấy điểm F sao cho 0 < FA < FB. Đường thẳng CF cắt AB tại M, cắt đường tròn O tại N (N khác F) và cắt đườn tròn (O') tại P (P khác C). Hỏi: (a) Khi 0 < ACB = 60 độ, tính độ dài DE theo R. (b) Chứng minh rằng CN/CF = CP/CM. (c) Gọi I, H lần lượt là hình chiếu vuông góc của F lên BD, AB. Các đường thẳng IH và CD cắt nhau tại K. Tìm vị trí của điểm F để biểu thức AB/BD + AD/FH + FI/FK đạt giá trị nhỏ nhất. 3. Cho góc xOy nhọn và A là điểm cố định trên Ox. Đường tròn (I) tiếp xúc với Ox, Oy tại E, D. Gọi AF là tiếp tuyến thứ 2 từ A đến đường tròn (I) (F là tiếp điểm). Chứng minh rằng đường thẳng DF luôn đi qua một điểm cố định. File WORD chuẩn bị cho quý thầy cô có thể tải về để sử dụng. Hy vọng rằng Đề thi sẽ giúp các em ôn tập và nắm vững kiến thức, chuẩn bị tốt cho kỳ thi sắp tới. Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề thi HSG huyện Toán 9 năm 2019 - 2020 phòng GDĐT Yên Thành - Nghệ An
Ngày … tháng 11 năm 2019, phòng Giáo dục và Đào tạo huyện Yên Thành, tỉnh Nghệ An tổ chức kỳ thi chọn học sinh giỏi môn Toán lớp 9 cấp huyện năm học 2019 – 2020. Đề thi HSG huyện Toán 9 năm 2019 – 2020 phòng GD&ĐT Yên Thành – Nghệ An gồm có 05 bài toán, thời gian làm bài 150 phút, đề thi gồm 01 trang. Trích dẫn đề thi HSG huyện Toán 9 năm 2019 – 2020 phòng GD&ĐT Yên Thành – Nghệ An : + Trong mặt phẳng cho 6 điểm A1, A2, A3, A4, A5, A6 trong đó không có ba điểm nào thẳng hàng. Với ba điểm bất kỳ trong sáu điểm này luôn tìm được hai điểm mà khoảng cách giữa chúng nhỏ hơn 673. Chứng minh rằng trong sáu điểm đã cho luôn tìm được ba điểm là ba đỉnh một tam giác có chu vi nhỏ hơn 2019. [ads] + Cho tam giác nhọn ABC (AB < AC), ba đường cao AD, BE, CF cắt nhau tại H. Gọi I là giao điểm EF và AH. Đường thẳng qua I và song song với BC cắt AB, BE lần lượt tại P và Q. a) Chứng minh tam giác AEF đồng dạng tam giác ABC. b) Chứng minh IP = IQ. c) Gọi M là trung điểm của AH chứng minh I là trực tâm của tam giác BMC. + Cho a, b, c thỏa mãn 2a + b + c = 0. Chứng minh rằng: 2a^3 + b^3 + c^3 = 3a(a + b)(c – b).
Đề thi học sinh giỏi huyện Toán 9 năm 2019 - 2020 phòng GDĐT Nghi Lộc - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo cùng các em học sinh đề thi học sinh giỏi huyện Toán 9 năm học 2019 – 2020 phòng GD&ĐT Nghi Lộc – Nghệ An, đề thi được biên soạn theo dạng tự luận với 05 bài toán, thời gian làm bài 150 phút, kỳ thi nhằm tuyển chọn các em học sinh lớp 9 có khả năng học tập môn Toán xuất sắc trên địa bàn huyện Nghi Lộc, tỉnh Nghệ An. Trích dẫn đề thi học sinh giỏi huyện Toán 9 năm 2019 – 2020 phòng GD&ĐT Nghi Lộc – Nghệ An : + Cho hình vuông ABCD có cạnh là a. Gọi O là giao điểm của hai đường chéo AC và BD. Lấy điểm E thuộc BC sao cho BE = 1/2EC. Gọi M là giao điểm của hai đường thẳng AE và CD. Trên tia đối của tia DC lấy điểm I sao cho DI = BE. a) Chứng minh: AO.AC = a2 và 1/AI^2 + 1/AM^2 = 1/a^2. b) Trên tia đối của tia CB lấy điểm N sao cho CN = CM. Chứng minh tam giác BOE đồng dạng với tam giác BND. c) Lấy điểm F thuộc tia đối của tia CD sao cho CF = a/2, gọi H là giao điểm của AM và BF. Chứng minh CH vuông góc với AM. [ads] + Cho biểu thức P. a) Nêu điều kiện xác định và rút gọn P. b) Tìm a để P + |P| = 0. c) Tìm a thuộc Z để P thuộc Z. + Tìm các số tự nhiên x sao cho 17 + x^2 là một số chính phương.
Đề thi HSG Toán 9 vòng 1 năm 2019 - 2020 phòng GDĐT Quỳ Hợp - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi HSG Toán 9 vòng 1 năm học 2019 – 2020 phòng GD&ĐT Quỳ Hợp – Nghệ An, đề thi gồm có 05 bài toán tự luận, thời gian làm bài 150 phút, học sinh bảng B không làm câu số 5, học sinh không được sử dụng máy tính khi làm bài. Trích dẫn đề thi HSG Toán 9 vòng 1 năm 2019 – 2020 phòng GD&ĐT Quỳ Hợp – Nghệ An : + Cho nửa đường tròn tâm O đường kính AB, kẻ dây CD bất kỳ không trùng với AB. Gọi H, K theo thứ tự là chân các đường vuông góc kẻ từ A và B đến đường thẳng CD. a/ Chứng minh: CH = DK. b/ Chứng minh: S_ABCD = S_ACB + S_ADB. c/ Tìm vị trí dây CD để diện tích tứ giác AHKB lớn nhất, tính diện tích lớn nhất đó biết AB = 30 cm, CD = 18 cm. [ads] + Trong hình vuông đơn vị (cạnh bằng 1) có 101 điểm. Chứng minh rằng có 5 điểm đã chọn được phủ bởi hình tròn bán kính 1/7. + Cho biểu thức P. a) Nêu điều kiện xác định rồi rút gọn biểu thức P. b) Tìm tất cả các giá trị nguyên của a để biểu thức P nhận giá trị nguyên. + Tìm các số nguyên tố p sao cho 7p + 1 bằng lập phương của một số tự nhiên. + Tìm số tự nhiên n sao cho số sau là số chính phương: n^2 + n + 2020.
Đề thi chọn HSG Toán 9 vòng 1 năm 2019 - 2020 phòng GDĐT Thường Tín - Hà Nội
Ngày … tháng 10 năm 2019, phòng Giáo dục và Đào tạo UBND huyện Thường Tín, thành phố Hà Nội tổ chức kỳ thi chọn học sinh giỏi lớp 9 vòng 1 môn Toán năm học 2019 – 2020. Đề thi chọn HSG Toán 9 vòng 1 năm học 2019 – 2020 phòng GD&ĐT Thường Tín – Hà Nội gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 120 phút. Trích dẫn đề thi chọn HSG Toán 9 vòng 1 năm 2019 – 2020 phòng GD&ĐT Thường Tín – Hà Nội : + Cho hai đường tròn (O;R) và đường tròn (O’;R/2) tiếp xúc ngoài nhau tại A. Trên đường tròn (O) lấy điểm B sao cho AB = R và điểm M trên cung lớn AB. Tia MA cắt đường tròn (O’) tại điểm thứ hai là N. Qua N kẻ đường thẳng song song với AB cắt đường thẳng MB ở Q và cắt đường tròn (O’) ở P. a. Chứng minh: Tam giác OAM đồng dạng với tam giác OAN. b. Tính: NQ theo R. c. Xác định vị trí của M để diện tích tứ giác ABQN đạt giá trị lớn nhất. Tính giá trị lớn nhất theo R. + Cho tam giác ABC và một điểm O nằm trong tam giác đó. Các tia AO, BO, CO cắt các cạnh BC, CA, AB theo thứ tự tại M, N, P. Chứng minh rằng: OA/AM + OB/BN + OC/CP = 2. + Cho hai số dương x, y thỏa mãn điều kiện x^3 + y^3 = x – y. Chứng minh rằng: x + y < 1.