Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lần 3 lớp 10 môn Toán năm 2022 2023 trường THPT Thuận Thành 1 Bắc Ninh

Nội dung Đề khảo sát lần 3 lớp 10 môn Toán năm 2022 2023 trường THPT Thuận Thành 1 Bắc Ninh Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề khảo sát chất lượng lần 3 môn Toán lớp 10 năm học 2022 – 2023 trường THPT Thuận Thành số 1, tỉnh Bắc Ninh; đề thi mã đề 132 gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, không kể thời gian phát đề; đề thi có đáp án. Trích dẫn Đề khảo sát lần 3 Toán lớp 10 năm 2022 – 2023 trường THPT Thuận Thành 1 – Bắc Ninh : + Vòng chung kết “Học sinh tài năng” ở một trường THPT có 7 thí sinh dự thi trong đó có Long và Thắm. Mỗi thí sinh chọn một câu hỏi thuộc một trong bốn chủ đề: Âm nhạc, thể thao, lịch sử, khoa học để trả lời. Số cách chọn sao cho chủ đề nào cũng có thí sinh chọn và hai bạn Long, Thắm luôn chọn cùng chủ đề bằng? + Cho hòn đảo D cách bờ 4km (CD km 4). Ngôi làng B cách C một khoảng 7km. Nhà nước muốn xây dựng một trạm y tế A trên đất liền sao cho có thể phục vụ được cho dân cư ở cả đảo D và làng B. Biết trung bình vận tốc di chuyển tàu cứu thương là 100 km h xe cứu thương là 80 km h. Vậy nên đặt trạm y tế A cách đảo D bao xa để thời gian cứu thương cho hai địa điểm là như nhau? (tham khảo hình vẽ bên dưới). + Ông A có một mảnh vườn hình elip có độ dài trục lớn là 10m, độ dài trục nhỏ là 8m. Ông A chia mảnh vườn elip thành hai phần bởi đường tròn có đường kính bằng độ dài trục nhỏ và có tâm trùng với tâm của elip. Ông dự tính sẽ làm một hồ cá hình tròn ở giữa miếng đất, phần còn lại ông sẽ trồng cỏ (mô tả như hình vẽ). Biết diện tích của một elip có phương trình chính tắc 2 2 1 x y E a b có công thức là S ab. Diện tích phần trồng cỏ là (làm tròn đến hai chữ số thập phân)? File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề chọn đội tuyển HSG Toán 10 năm 2021 - 2022 trường THPT chuyên Bến Tre
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra chọn đội tuyển học sinh giỏi môn Toán 10 năm học 2021 – 2022 trường THPT chuyên Bến Tre, tỉnh Bến Tre. Trích dẫn đề chọn đội tuyển HSG Toán 10 năm 2021 – 2022 trường THPT chuyên Bến Tre : + Trong hình vuông có độ dài cạnh bằng 4, cho trước 33 điểm, trong đó không có ba điểm nào thẳng hàng. Người ta vẽ các đường tròn bán kính đều bằng 2 và có tâm tại các điểm đã cho. Hỏi có hay không ba điểm trong số các điểm đã cho cùng thuộc vào phần chung của ba hình tròn có tâm cũng chính là ba điểm đó. + Cho dãy số (un) được xác định bởi. Tìm công thức của số hạng tổng quát un theo n. + Cho tam giác ABC nhọn, không cân và có các đường cao AH, BM, CN. Gọi D là chân đường phân giác trong của góc A và E, F lần lượt là hình chiếu của D lên các cạnh AB, АС. a. Chứng minh b. Chứng minh rằng các đường thẳng MN, EF, BC đồng quy.
Đề HSG Toán 10 năm 2021 - 2022 trường chuyên Lương Thế Vinh - Đồng Nai
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi lớp 10 môn Toán chuyên năm học 2021 – 2022 trường THPT chuyên Lương Thế Vinh, tỉnh Đồng Nai; kỳ thi được diễn ra vào ngày 15 tháng 04 năm 2022. Trích dẫn đề HSG Toán 10 năm 2021 – 2022 trường chuyên Lương Thế Vinh – Đồng Nai : + Biết rằng phương trình x3 – ax2 + bx – c = 0 có 3 nghiệm nguyên phân biệt, chứng minh rằng phương trình x2 – 2ax + 3b = 0 cũng có 2 nghiệm phân biệt là m và n. + Cho abc là một số nguyên tố có ba chữ số. Chứng minh phương trình ax2 + bx + c = 0 không có nghiệm hữu tỷ. + Một nhóm học sinh gồm sáu em, trong đó có hai em lớp A, hai em lớp B và hai em lớp C. Mỗi ngày một lần, các em xếp thành một hàng dọc sao cho chỉ có đúng một cặp hai em cùng lớp đứng cạnh nhau. Biết rằng không có hai ngày có cách xếp giống nhau, vậy các em có thể xếp được nhiều nhất bao nhiêu ngày?
Đề HSG lớp 10 11 môn Toán năm 2021 - 2022 trường chuyên Nguyễn Huệ - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi lớp 10 & lớp 11 môn Toán năm học 2021 – 2022 trường THPT chuyên Nguyễn Huệ, thành phố Hà Nội. Trích dẫn đề HSG lớp 10 & 11 môn Toán năm 2021 – 2022 trường chuyên Nguyễn Huệ – Hà Nội : + Có bao nhiêu số tự nhiên có 8 chữ số, trong đó có hai chữ số lẻ khác nhau mà mỗi chữ số lẻ xuất hiện đúng một lần và ba chữ số chẵn khác nhau mà mỗi chữ số chẵn có mặt đúng hai lần. + Cho tam giác ABC và điểm P thuộc miền trong tam giác ABC. Lấy điểm Q sao cho các đường thẳng AQ, BQ, CQ lần lượt đối xứng với các đường thẳng AP, BP, CP qua đường phân giác trong của các góc A, B, C. Gọi M, N lần lượt là hình chiếu của P lên AB, AC; K, L lần lượt là hình chiếu của Q lên AB, AC. a) Chúng minh rằng các điểm M, N, K, L cùng thuộc một đường tròn. Tìm tâm của đường tròn đó. b) Gọi T là giao điểm của MN và KL.Chứng minh rằng AT vuông góc PQ. + Giả sử a b c là các số thực không âm thỏa mãn a2 + b2 + c2 = 3. Chứng minh?
Đề khảo sát đội tuyển Toán 10 lần 2 năm 2021 - 2022 trường THPT Trần Phú - Vĩnh Phúc
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề khảo sát đội tuyển học sinh giỏi môn Toán 10 lần 2 năm học 2021 – 2022 trường THPT Trần Phú, tỉnh Vĩnh Phúc; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề khảo sát đội tuyển Toán 10 lần 2 năm 2021 – 2022 trường THPT Trần Phú – Vĩnh Phúc : + Cho tứ giác ABCD. Gọi M N P Q lần lượt là trung điểm của AB BC CD DA. Gọi O là giao điểm của MP và NQ, G là trọng tâm của tam giác BCD. Chứng minh rằng ba điểm A O G thẳng hàng. + Cho tam giác ABC là tam giác đều cạnh bằng a, M là điểm di động trên đường thẳng AC. Tìm giá trị nhỏ nhất của biểu thức T MA MB MC MA MB MC. + Cho tứ giác lồi ABCD có AC BD và nội tiếp đường tròn tâm O bán kính R 1010. Đặt diện tích tứ giác ABCD bằng S và AB a BC b CD c DA d. Tính giá trị biểu thức.