Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề Toán tuyển sinh năm 2019 2020 trường chuyên Lê Quý Đôn BRVT (Vòng 1)

Nội dung Đề Toán tuyển sinh năm 2019 2020 trường chuyên Lê Quý Đôn BRVT (Vòng 1) Bản PDF - Nội dung bài viết Đề Toán tuyển sinh năm 2019-2020 trường chuyên Lê Quý Đôn BRVT Đề Toán tuyển sinh năm 2019-2020 trường chuyên Lê Quý Đôn BRVT Ngày 30 tháng 05 năm 2019, trường THPT chuyên Lê Quý Đôn, tỉnh Bà Rịa - Vũng Tàu đã tổ chức kỳ thi Toán tuyển sinh vào lớp 10 năm học 2019-2020. Đề Toán tuyển sinh lớp 10 năm 2019-2020 của trường chuyên Lê Quý Đôn - BRVT (Vòng 1) là đề thi chung dành cho tất cả các thí sinh tham dự kỳ thi, bao gồm 5 bài toán tự luận, thời gian làm bài là 120 phút. Trích dẫn một số câu hỏi từ đề Toán tuyển sinh lớp 10 năm 2019-2020 trường chuyên Lê Quý Đôn - BRVT (Vòng 1): + Phân tích hàm số y = -1/2x^2 có đồ thị (P) và đường thẳng (d): y = (m - 1)x - m - 3 (với m là tham số). + Tính diện tích của một thửa ruộng hình chữ nhật có độ dài đường chéo là 40m, chiều dài lớn hơn chiều rộng 8m. + Chứng minh các tính chất của tam giác ABC góc nhọn. + Giải các bài toán tương tác với đường tròn và các đường thẳng trong mặt phẳng. Đề Toán tuyển sinh năm 2019-2020 của trường chuyên Lê Quý Đôn BRVT không chỉ đánh giá kiến thức của thí sinh mà còn đòi hỏi sự tỉ mỉ, logic và khả năng giải quyết vấn đề. Chúc các em thí sinh đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Bình Dương
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Bình Dương gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Hai đội công nhân đắp đê ngăn triều cường. Nếu hai đội cùng làm thì trong 6 ngày xong việc. Nếu làm riêng thì đội I hoàn thành công việc chậm hơn đội II là 9 ngày. Hỏi nếu làm riêng thì mỗi đội đắp xong đê trong bao nhiêu ngày? + Ta giác AMB cân tại M nội tiếp trong đường tròn (O; R). Kẻ MH vuông góc AB (H thuộc AB), MH cắt đường tròn tại N. Biết MA = 10cm, AB = 12cm [ads] a) Tính MH và bán kính R của đường tròn b) Trên tia đối tia BA lấy điểm C. MC cắt đường tròn tại D, ND cắt AB tại E. Chứng minh tứ giác MDEH nội tiếp và chứng minh các hệ thức sau: NB^2 = NE.ND và AC.BE = BC.AE c) Chứng minh NB tiếp xúc với đường tròn ngoại tiếp tam giác BDE
Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Nam Định
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Nam Định gồm 8 câu hỏi trắc nghiệm và 5 bài toán tự luận, có đáp án và lời giải chi tiết. Trích một số bài toán trong đề: + Cho tam giác ABC vuông tại A đường cao AH. đường tròn tâm E đường kính BH cắt AB tại M (M khác B), đường tròn tâm F đường kính HC cắt AC tại N (N khác C) 1) Chứng minh AM.AB = AN.AC và AN.AC = MN^2 2) Gọi I là trung điểm của EF, O là giao điểm của AH và MN. Chứng minh IO vuông góc với đường thẳng MN 3) Chứng minh 4(EN^2 + FM^2) = BC^2 + 6AH^2 [ads] + Cho tam giác ABC vuông tại A đường cao AH biết BH = 4cm và CH = 16cm độ dài đường cao AH bằng? + Cho hình nón có bán kính bằng 3 cm chiều cao bằng 4cm diện tích xung quanh của hình nón đã cho bằng?
Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Hải Dương
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Hải Dương gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Tháng đầu, hai tổ sản xuất được 900 chi tiết máy. Tháng thứ hai, do cải tiến kỹ thuật nên tổ I vượt mức 10% vả tổ II vượt mức 12% so với tháng đầu, vì vậy, hai tổ đã sản xuất được 1000 chi tiết máy. Hỏi trong tháng đầu mỗi tổ sản xuất được bao nhiêu chi tiết máy? + Cho đường tròn tâm O, bán kính R. Từ một điểm M ở ngoài đường tròn, kẻ hai tiếp tuyến MA và MB với đường tròn (A, B là các tiếp điểm). Qua A, kẻ đường thẳng song song với MO cắt đường tròn tại E (E khác A), đường thẳng ME cắt đường tròn tại F (F khác E), đường thẳng AF cắt MO tại N, H là giao điểm của MO và AB [ads] 1) Chứng minh: Tứ giác MAOB nội tiếp đường tròn 2) Chứng minh: MN^2 = NF.NA và MN = NH 3) Chứng minh: HB^2/HF^2 – EF/MF = 1
Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán trường THPT chuyên Lê Quý Đôn - Bình Định
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán trường THPT chuyên Lê Quý Đôn – Bình Định gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Hai thành phố A và B cách nhau 450 km. Một ô tô đi từ A đến B với vận không đổi trong một thời gian dự định. Khi đi, ô tô tăng vận tốc hơn dự kiến 5 km/h nên đã đến B sớm hơn 1 giờ so với thời gian dự định. Tính vận tốc dự kiến ban đầu của ô tô. + Cho đường tròn (O), dây BC không phải là đường kính. Các tiếp tuyến của (O) tại B và C cắt nhau ở A. Lấy điểm M trên cung nhỏ BC (M khác B và C), gọi I,H,K lần lượt là chân đường vuông góc hạ từ M xuống BC,CA và AB. Chứng minh: [ads] a) Các tứ giác BKMI; CHMI nội tiếp b) MI^2 = MK.MH c) BM cắt IK tại D, CM cắt IH tại E. Chứng minh DE//BC