Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cương ôn thi tốt nghiệp THPT năm 2022 môn Toán - Nguyễn Hoàng Việt

Đề cương ôn thi tốt nghiệp THPT năm 2022 môn Toán gồm 193 trang, được biên soạn bởi thầy giáo Th.S Nguyễn Hoàng Việt (giáo viên Toán trường THPT Lương Thế Vinh, tỉnh Quảng Bình). MỤC LỤC : Câu 39 1. Câu 40 12. + Dạng 1. Sự tương giao biết đồ thị hàm f(x) – loại không có tham số m 12. + Dạng 2. Sự tương giao biết đồ thị hàm f(x) – Loại có tham số m 18. + Dạng 3. Sự tương giao biết đồ thị hàm f(x) – Loại có chứa hàm lượng giác 21. + Dạng 4. Sự tương giao biết bảng biến thiên hàm số f(x) – Loại không có tham số m 23. + Dạng 5. Sự tương giao biết bảng biến thiên hàm số f(x) – Loại có tham số m 32. + Dạng 6. Sự tương giao biết bảng biến thiên hàm số f(x) – Có chứa hàm số lượng giác 34. Câu 41 37. + Dạng 7. Tính nguyên hàm & tích phân sử dụng tính chất và nguyên hàm cơ bản 37. + Dạng 8. Tính nguyên hàm & tích phân bằng phương pháp đổi biến 41. + Dạng 9. Tích phân từng phần 45. + Dạng 10. Tích phân hàm ẩn 50. Câu 42 58. Câu 43 68. + Dạng 11. Tham số m của phương trình bậc hai 68. + Dạng 12. Phương trình đưa về bậc hai 70. + Dạng 13. Tìm số phức thỏa mãn điều kiện cho trước 72. + Dạng 14. Tính toán các yếu tố của số phức (mức vận dụng) 74. + Dạng 15. Bài toán tập hợp điểm 77. Câu 44 81. + Dạng 16. Bài toán min – max với quỹ tích là đường tròn (Phương pháp hình học) 82. + Dạng 17. Bài toán min – max với quỹ tích là đường tròn (Phương pháp đại số) 91. + Dạng 18. Bài toán min – max với quỹ tích là đường thẳng (Phương pháp hình học) 97. + Dạng 19. Bài toán min – max với quỹ tích là đường thẳng (Phương pháp đại số) 100. + Dạng 20. Bài toán min – max với quỹ tích là đường tròn, đường thẳng (Phương pháp hình học) 104. + Dạng 21. Bài toán min – max với quỹ tích là elip 109. + Dạng 22. Bài toán min – max với quỹ tích là pararbol 110. + Dạng 23. Bài toán min – max với quỹ tích là hyperbol 113. Câu 45 115. + Dạng 24. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số f0(x), g0(x) khi biết các cực trị của hàm số f(x) − g(x) hoặc các cực trị của hàm số f0(x) − g0 (x) 116. + Dạng 25. Tính diện tích hình phẳng dựa vào tính chất đồ thị và các hoành độ tiếp điểm 118. + Dạng 26. Ứng dụng diện tích hình phẳng để so sánh giá trị hàm số 120 . + Dạng 27. Ứng dụng diện tích hình phẳng để tính tích phân 123 . Câu 46 126. + Dạng 28. Lập đường thẳng đi qua một điểm A, cắt đường thẳng d1 và song song với mặt phẳng (P) 126. + Dạng 29. Lập đường thẳng d đi qua M, vuông góc với d1 và cắt d2 130. + Dạng 30. Lập đường thẳng – yêu cầu tìm vectơ chỉ phương thông qua giao điểm 131. + Dạng 31. Lập đường thẳng – yêu cầu tìm vectơ chỉ phương thông qua tích có hướng 133. Câu 47 136. + Dạng 32. Khối nón bị cắt bởi một mặt phẳng đi qua đỉnh và không qua trục 136. + Dạng 33. Khối nón nội tiếp, ngoại tiếp khối tròn xoay hoặc khối đa diện 138. + Dạng 34. Khối trụ bị cắt bởi một mặt phẳng song song với trục 139. + Dạng 35. Khối trụ bị cắt bởi mặt phẳng cắt qua trục 140. + Dạng 36. Khối trụ nội tiếp ngoại tiếp khối đa diện hoặc khối tròn xoay 141. + Dạng 37. Mặt cầu ngoại tiếp khối lăng trụ 142. + Dạng 38. Mặt cầu ngoại tiếp khối chóp 143. Câu 48 148. + Dạng 39. Phương trình, bất phương trình có thể chuyển về dạng f(A) = f(B) hoặc f(A) ≤ f(B), trong đó f(x) là hàm số đơn điệu 148. + Dạng 40. Phương trình, bất phương trình f(x, y) = 0 hoặc f(x, y) ≥ 0 có hàm số f(x, y) đơn điệu theo biến x hoặc biến y 156. + Dạng 41. Phương trình, bất phương trình dạng f(x, y) = 0 hoặc f(x, y) ≥ 0, trong đó hàm số f(x, y) có đạo hàm cấp hai theo biến x hoặc biến y không đổi dấu 163. + Dạng 42. Sử dụng bất đẳng thức Bernoulli hoặc ax ≤ mx + n, ∀x ∈ [α; β] 165. Câu 49 167. + Dạng 43. Các bài toán tìm điểm 167. + Dạng 44. Các bài toán lập phương trình mặt cầu 170. + Dạng 45. Các bài toán lập phương trình mặt phẳng 173. Câu 50 178. + Dạng 46. Tìm cực trị của hàm số hợp g(x) = f[u(x)] khi biết đồ thị hàm số f(x) hay BBT hàm số f(x) 178. + Dạng 47. Tìm tham số để hàm số chứa giá trị tuyệt đối đạt giá trị lớn nhất trên một đoạn 184. + Dạng 48. Tìm tham số để hàm số hợp có số điểm cực trị cho trước 184.

Nguồn: toanmath.com

Đọc Sách

Tài liệu ôn tập lý thuyết thi tốt nghiệp Trung học Phổ thông môn Toán
Tài liệu gồm 21 trang, được biên soạn bởi thầy giáo Huỳnh Phú Sĩ, hướng dẫn học sinh lớp 12 ôn tập lý thuyết để chuẩn bị cho kỳ thi tốt nghiệp Trung học Phổ thông môn Toán. MỤC LỤC : Chủ đề 1 . Khảo sát sự biến thiên và đồ thị của hàm số 2. 1. Sự biến thiên của hàm số 2. 2. Cực trị của hàm số 2. 3. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số 3. 4. Đường tiệm cận 3. 5. Khảo sát đồ thị hàm số 3. Chủ đề 2 . Lũy thừa – Mũ – Logarit 6. 1. Lũy thừa 6. 2. Hàm số lũy thừa 7. 3. Logarit 7. 4. Hàm số mũ và hàm số logarit 8. 5. Phương trình mũ và phương trình logarit 9. 6. Bất phương trình mũ và bất phương trình logarit 9. Chủ đề 3 . Nguyên hàm – Tích phân và ứng dụng 10. 1. Nguyên hàm 10. 2. Tích phân 10. 3. Ứng dụng của tích phân trong hình học 11. Chủ đề 4 . Số phức 12. 1. Số phức 12. 2. Phép cộng, trừ, nhân, chia số phức 12. Chủ đề 5 . Khối đa diện 13. 1. Khái niệm về hình đa diện và khối đa diện 13. 2. Khối đa diện đều 13. 3. Thể tích khối đa diện 13. Chủ đề 6 . Khối tròn xoay 14. 1. Hình nón và hình trụ 14. 2. Hình cầu 14. Chủ đề 7 . Phương pháp tọa độ trong không gian 16. 1. Hệ tọa độ Oxyz 16. 2. Phương trình mặt cầu 17. 3. Phương trình mặt phẳng 17. 4. Phương trình đường thẳng 18. Chủ đề 8 . Dãy số – Quy tắc đếm – Xác suất – Góc – Khoảng cách 19. 1. Dãy số 19. 2. Quy tắc đếm 19. 3. Xác suất 20. 4. Góc và Khoảng cách trong không gian.
Làm ngược và loại trừ trong giải toán trắc nghiệm - Trần Tuấn Anh
Tài liệu gồm 17 trang, được biên soạn bởi thầy giáo Trần Tuấn Anh, hướng dẫn sử dụng phương pháp làm ngược và loại trừ trong giải toán trắc nghiệm. 1. “Làm ngược”: Từ đáp án, kiểm tra các điều kiện của bài toán để xác thực tính đúng – sai: Ta cần chú ý rằng, các đáp án cũng chính là giả thiết của bài toán, gợi ý giúp ta giải quyết bài toán trắc nghiệm. 2. “Loại trừ”: Từ giả thiết, bóc tách ra các điều kiện độc lập, kiểm tra các đáp án vi phạm điều kiện để loại trừ. Đối với câu hỏi có chọn lựa phương án đúng, đáp án nào vi phạm điều kiện bài toán, sẽ bị loại trừ. Nếu câu hỏi trắc nghiệm có bốn đáp án, mà trong đó có một đáp án đúng, chúng ta xác định được ba trong bốn đáp án đã cho là sai thì đáp án đúng là đáp án còn lại. Xem thêm : + Sử dụng chủ yếu suy luận trong giải toán trắc nghiệm – Trần Tuấn Anh + Phương pháp chọn đại diện giải toán trắc nghiệm – Trần Tuấn Anh
Tổng hợp công thức ôn thi tốt nghiệp THPT môn Toán - Lê Quốc Bảo
Tài liệu gồm 19 trang, được biên soạn bởi thầy giáo Lê Quốc Bảo, tổng hợp công thức ôn thi tốt nghiệp THPT môn Toán. Bảng đạo hàm cơ bản. Bảng nguyên hàm cơ bản. Phần I . ĐẠI SỐ VÀ GIẢI TÍCH. I. Tổ hợp – Xác suất. II. Cấp số cộng, cấp số nhân. IV. Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số. V. Hàm số lũy thừa, hàm số mũ và hàm số lôgarit. VI. Ứng dụng của tích phân. VII. Số phức. Phần II . HÌNH HỌC. VIII. Hình chóp đều. IX. Khối đa diện đều. X. Khối nón, khối trụ và khối cầu. XI. Không gian Oxyz. XII. Phương trình đường thẳng.