Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG lớp 9 môn Toán cấp huyện năm 2022 2023 phòng GD ĐT Sơn Động Bắc Giang

Nội dung Đề thi HSG lớp 9 môn Toán cấp huyện năm 2022 2023 phòng GD ĐT Sơn Động Bắc Giang Bản PDF Bài thi Học sinh giỏi Toán cấp huyện lớp 9 năm học 2022-2023 tại phòng Giáo dục và Đào tạo huyện Sơn Động, tỉnh Bắc Giang đã thu hút sự quan tâm của nhiều giáo viên, học sinh và phụ huynh. Đề thi được thiết kế theo cấu trúc 60% trắc nghiệm và 40% tự luận, thời gian làm bài là 120 phút. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm để các học sinh có thể tự kiểm tra và rút kinh nghiệm sau khi kết thúc kỳ thi.

Trích dẫn một số câu hỏi từ đề thi:

1) Với cây cau cao 7m, hỏi để hái buồn cau xuống, chiếc thang tre dài 8m cần được đặt như thế nào để góc giữa thang tre và mặt đất là bao nhiêu?

2) Trong tam giác vuông ABC, AB = 6cm và AC = 6,4cm. Tính độ dài BC và AC. Hãy chứng minh rằng 3DE = BC và BD * CE.

3) Trong đường tròn O, 2AB là một dây có độ dài bằng 2. Hỏi khoảng cách từ tâm O đến AB có giá trị bao nhiêu?

Đề thi Học sinh giỏi Toán lớp 9 cấp huyện năm học 2022-2023 không chỉ là cơ hội để các học sinh thử thách kiến thức mà còn là dịp để rèn luyện kỹ năng giải quyết vấn đề và logic. Chúc tất cả các thí sinh tham gia kỳ thi thành công!

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2016 - 2017 sở GDĐT Lai Châu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2016 – 2017 sở GD&ĐT Lai Châu; kỳ thi được diễn ra vào ngày 09 tháng 04 năm 2017. Trích dẫn đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2016 – 2017 sở GD&ĐT Lai Châu : + Cho đường tròn (O). Qua điểm A nằm ngoài đường tròn kẻ hai tiếp tuyến AM, AN (M, N là hai tiếp điểm) và cát tuyến ABC với đường tròn (B nằm giữa A và C). Gọi I là trung điểm của BC. a) Chứng minh: A, M, O, I, N thuộc một đường tròn; b) Chứng minh: IA là tia phân giác của MIN; c) Vẽ dây CD song song MN, H là giao điểm của BD và MN. Chứng minh: HM = HN. + Cho phương trình: x2 – (m + 5)x + 3m + 6 = 0. Tìm m để phương trình có hai nghiệm x1, x2 là độ dài hai cạnh tam giác vuông có cạnh huyền bằng 5. + Cho biểu thức: P a) Rút gọn P; b) Tính giá trị của P với x 9 45; c) Tìm các giá trị chính phương của x để P có giá trị nguyên.
Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2016 - 2017 sở GDĐT Đồng Tháp
Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2016 – 2017 sở GD&ĐT Đồng Tháp gồm 06 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được tổ chức ngày 19/3/2017, đề thi có lời giải chi tiết và hướng dẫn chấm điểm.
Đề thi HSG Toán 9 năm 2016 - 2017 phòng GDĐT thị xã Giá Rai - Bạc Liêu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi HSG Toán 9 năm 2016 – 2017 phòng GD&ĐT thị xã Giá Rai – Bạc Liêu; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.
Đề thi chọn học sinh giỏi Toán 9 năm 2016 - 2017 sở GDĐT Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi Toán 9 THCS cấp tỉnh năm học 2016 – 2017 sở GD&ĐT tỉnh Ninh Bình; kỳ thi được diễn ra vào ngày 21 tháng 02 năm 2017; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi chọn học sinh giỏi Toán 9 năm 2016 – 2017 sở GD&ĐT Ninh Bình : + Cho phương trình: 2 2 x 2 m 1 x m 2m 1 0 (x là ẩn; m là tham số khác 0). Tìm m để phương trình có hai nghiệm phân biệt 1 2 x ;x thỏa mãn: 2 2 1 2 12 2 1 10 0 x x x x 9m. + Cho đường tròn tâm O, bán kính R có đường kính AB cố định. C là một điểm thay đổi trên đường tròn (C khác A và B). Gọi H là hình chiếu của C trên AB, I là trung điểm của AC. Đường thẳng OI cắt tiếp tuyến tại A của đường tròn (O; R) tại M, đường thẳng MB cắt đường thẳng CH tại K. a) Chứng minh 4 điểm C, H, O, I cùng thuộc một đường tròn b) Chứng minh MC là tiếp tuyến của đường tròn (O;R) c) Chứng minh IK song song với AB d) Xác định vị trí của điểm C để chu vi tam giác ABC đạt giá trị lớn nhất? Tìm giá trị lớn nhất đó. + Cho a, b, c là các số thực không âm thỏa mãn abc3. Tìm giá trị nhỏ nhất của biểu thức 3 33 Qa b c.