Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề số phức VD - VDC - Nguyễn Xuân Chung

Tài liệu gồm 61 trang được biên soạn bởi thầy giáo Nguyễn Xuân Chung, phân tích, bình luận và hướng dẫn giải một số dạng toán số phức vận dụng và vận dụng cao (VD & VDC, nâng cao, khó …) thường gặp trong đề thi thử THPT Quốc gia 2020 môn Toán. Các bài toán trong tài liệu được giải bằng nhiều phương pháp, có kết hợp vận dụng máy tính cầm tay Casio / Vinacal. Khái quát nội dung tài liệu chuyên đề số phức VD – VDC – Nguyễn Xuân Chung: PHẦN I : SỐ PHỨC CƠ BẢN. 1. Các câu trích từ đề thi tuyển sinh Đại học – Cao đẳng năm 2012 Nhân dịp mùa thi THPTQG 2020 sắp tới gần, ta thử nhìn nhận về các bài toán số phức thi ĐH – CĐ năm 2012, củng cố kiến thức và kỹ năng giải toán về số phức trong vài năm gần đây, góp phần giúp các em 2K2 đạt kết quả tốt hơn trong kỳ thi. 2. Một số câu trắc nghiệm gần đây 3. Một số bài luyện tập Như vậy trong phần I thì chúng ta ôn tập và cũng cố những kiến thức cơ bản nhất về số phức, đồng thời rèn luyện một số kỹ năng giải toán nhất định, nhìn chung các bài toán ở mức 6 – 7 điểm. PHẦN II : SỐ PHỨC VD – VDC. Qua các ví dụ trong Phần I thì chúng ta đã củng cố tương đối nhiều kiến thức cơ bản và rèn luyện một số kỹ năng giải toán về số phức. Trong Phần II này chúng ta tiếp tục nghiên cứu các bài toán nâng cao về số phức: trong đó liên quan đến khá nhiều kiến thức về hình học véc tơ và tọa độ trong mặt phẳng, ngoài ra cũng cần nhiều kiến thức về các bất đẳng thức Mincopxki và Bunhiacopxki. Trong phần II chúng ta sẽ nghiên cứu các bài toán ở mức 8 – 9 – 10 điểm, có khá nhiều bài toán và có nội dung rộng hơn, bao gồm: + Biểu diễn tập hợp số phức là đường thẳng, đường tròn (nâng cao). + Các bài toán tương đối đơn giản về giá trị lớn nhất, nhỏ nhất. + Các bài toán tính toán (nâng cao). + Các bài toán nâng cao về giá trị lớn nhất, nhỏ nhất. [ads] 1. Biểu diễn tập hợp số phức là đường thẳng hay đường tròn 2. Các bài toán đơn giản tìm giá trị lớn nhất, nhỏ nhất Đối với các bài toán vận dụng tương đối đơn giản về giá trị lớn nhất hay nhỏ nhất thì các em cần có kỹ năng tốt về viết phương trình đường thẳng, đường tròn. 3. Các bài toán tính toán Để thực hiện tính toán thì: + Thông thường ta xem số phức là giao của hai hay nhiều tập hợp biểu diễn số phức đó. + Hoặc các phép biến đổi đại số (giải hệ phương trình). Phép đặt ẩn phụ coi như xuyên suốt cả phần II này, đặc biệt ở phần nâng cao (Mục 4). 4. Các bài toán VDC tìm giá trị lớn nhất, nhỏ nhất Đối với các bài toán vận dụng cao thì các em cần có kỹ năng tốt về biểu diễn tương quan giữa các độ dài đoạn thẳng, nắm vững hơn các kiến thức về ba đường Cônic (Hình học 10). Mặt khác cũng thường xuyên sử dụng các bất đẳng thức Mincopxki và Bunhiacopxki. Ngoài ra các em có thể đại số hóa bài toán để khảo sát hàm số. Tuy nhiên vì thời gian thi trắc nghiệm có hạn nên cũng không phải là các bài toán quá khó, vì vậy các em hãy yên tâm. 5. Các bài luyện tập 6. Phụ lục : Chứng minh công thức tính nhanh khoảng cách từ một điểm đến đường trung trực của đoạn thẳng dạng số phức. Xem thêm : + Trắc nghiệm VD – VDC số phức – Đặng Việt Đông + Tìm giá trị lớn nhất và giá trị nhỏ nhất của môđun số phức + Bài toán GTLN – GTNN của môđun số phức

Nguồn: toanmath.com

Đọc Sách

Các dạng toán có yếu tố max - min trong số phức
Tài liệu gồm 20 trang, được biên soạn bởi thầy giáo Trương Đức Thịnh và cô giáo Nguyễn Thu Hằng (nhóm giáo viên tiếp sức chinh phục kỳ thi tốt nghiệp THPT năm 2021 môn Toán trên VTV7), hướng dẫn giải các dạng toán có yếu tố max – min trong số phức; đây là một trong những dạng toán khó ở trong chương trình môn Toán THPT và thường được lựa chọn ở các câu VD – VDC mang tính phân loại thí sinh; trong đề minh họa tốt nghiệp THPT 2021 môn Toán của Bộ Giáo dục và Đào tạo năm 2021 cũng có một câu ở mức độ như vậy. A. Phân tích bài toán số phức trong đề tham khảo TN THPT 2021 môn Toán. B. Các dạng toán thường gặp. + Dạng 1 : Sử dụng biến đổi đại số kết hợp với các bất đẳng thức quen thuộc để đánh giá. + Dạng 2 : Sử dụng biểu diễn hình học của số phức đưa về các bài toán cực trị quen thuộc. + Dạng 3 : Một vài cách hỏi khác cho bài toán số phức ở mức độ VD – VDC. Quan sát đề tham khảo và đề thi chính thức qua các năm gần đây chúng ta thấy rằng các câu ở mức độ vận dụng cao thường không dập khuôn theo đề tham khảo mà chỉ liên quan đến đề tham khảo ở mảng kiến thức nhất định, vì vậy ngoài việc nắm chắc kiến thức cơ bản, thành thạo các bài toán gốc các em còn phải rèn luyện thêm tư duy nhạy bén để xử lý được các bài toán một cách nhanh nhất.
Áp dụng đẳng thức và bất đẳng thức mô đun tìm GTLN - GTNN của mô đun số phức
Tài liệu gồm 14 trang, được biên soạn bởi quý thầy, cô giáo Nhóm Toán VD – VDC, hướng dẫn áp dụng đẳng thức và bất đẳng thức mô đun tìm GTLN – GTNN của mô đun số phức (các viết khác: giá trị lớn nhất – giá trị nhỏ nhất / min – max / cực trị), đây là dạng toán vận dụng cao (VDC / khó) xuất hiện trong đề minh họa tốt nghiệp THPT môn Toán năm 2021, và được dự đoán sẽ có trong đề thi chính thức TN THPT 2021 môn Toán sắp tới. I. Lý thuyết Mỗi số phức, ở khía cạnh đại số, là nghiệm tương ứng duy nhất một tam thức bậc hai monic hệ số thực có biệt thức âm. Nếu z là nghiệm của 2 f x x ax b với a b và 2 a b4 0 thì nghiệm còn lại sẽ gọi là liên hợp của nó. Tích hai nghiệm sẽ là b và là một số không âm. Căn bậc hai của b gọi là module. Ở khía cạnh hình học, mỗi số phức sẽ là cặp tọa độ của một vector, và độ lớn của vector đó chính là module. Module của số phức. Số phức liên hợp. 1. Đẳng thức Mô đun. 2. Bất đẳng thức Mô đun. II. Ví dụ minh họa III. Bài tập tương tự
Nắm trọn chuyên đề hình học Oxyz và số phức
Cuốn sách gồm 511 trang, được biên soạn bởi nhóm tác giả Tư Duy Toán Học 4.0: Phan Nhật Linh, Nguyễn Duy Hiếu, Nguyễn Khánh Linh, Lê Huy Long, tóm tắt toàn bộ lý thuyết và phương pháp giải các dạng toán, các ví dụ minh họa và bài tập rèn luyện từ cơ bản đến nâng cao chuyên đề hình học Oxyz và số phức, giúp các em hoàn thiện kiến thức, rèn tư duy và rèn luyện tốc độ làm bài; tất cả các bài tập trong sách đều có giải chi tiết 100% tiện lợi cho việc so sánh đáp án và tra cứu thông tin. Mục lục cuốn sách nắm trọn chuyên đề hình học Oxyz và số phức: PHẦN I : HÌNH TỌA ĐỘ OXYZ. CHỦ ĐỀ 1: HỆ TỌA ĐỘ TRONG KHÔNG GIAN. Dạng 1. Điểm và vectơ trong hệ tọa độ Oxyz. Dạng 2. Tích vô hướng và ứng dụng. Dạng 3. Phương trình mặt cầu. Dạng 4. Cực trị. CHỦ ĐỀ 2: PHƯƠNG TRÌNH MẶT PHẲNG. Dạng 1. Xác định vectơ pháp tuyến, tính tích có hướng của mặt phẳng. Dạng 2. Viết phương trình mặt phẳng. Dạng 3. Tìm tọa độ điểm liên quan đến mặt phẳng. Dạng 4. Góc và khoảng cách liên quan đến mặt phẳng. Dạng 5. Vị trí tương đối giữa hai mặt phẳng, giữa mặt cầu và mặt phẳng. Dạng 6. Cực trị liên quan đến mặt phẳng. CHỦ ĐỀ 3: PHƯƠNG TRÌNH ĐƯỜNG THẲNG. Dạng 1. Xác định vectơ chỉ phương của đường thẳng. Dạng 2. Viết phương trình đường thẳng. Dạng 3. Tìm tọa độ điểm liên quan đến đường thẳng. Dạng 4. Góc và khoảng cách liên quan đến đường thẳng. Dạng 5. Vị trí tương đối giữa hai đường thẳng, giữa đường thẳng và mặt phẳng. Dạng 6. Bài toán liên quan giữa đường thẳng – mặt phẳng – mặt cầu. Dạng 7. Cực trị liên quan đến đường thẳng. CHỦ ĐỀ 4: ỨNG DỤNG CỦA PHƯƠNG PHÁP TỌA ĐỘ. Dạng 1. Tọa độ hóa Hình học không gian. Dạng 2. Bài toán đại số. CHỦ ĐỀ 5: TỔNG HỢP VỀ HÌNH TỌA ĐỘ OXYZ. PHẦN II : SỐ PHỨC. Dạng toán 1: Xác định các yếu tố cơ bản của số phức. Dạng toán 2: Phép toán cộng, trừ, nhân hai số phức. Dạng toán 3: Phép chia hai số phức. Dạng toán 4: Bài tập quy về giải PT – HPT và tập hợp điểm biễu diễn số phức. Dạng toán 5: Phương trình bậc hai với hệ số thực. Dạng toán 6: Cực trị số phức.
Chuyên đề cực trị số phức
Tài liệu gồm 60 trang, phân dạng và hướng dẫn giải các bài tập trắc nghiệm vận dụng cao (VDC) chuyên đề cực trị số phức, giúp học sinh chinh phục mức điểm 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. A. MỘT SỐ TÍNH CHẤT CẦN NHỚ 1. Môđun của số phức. 2. Một số quỹ tích nên nhớ. B. MỘT SỐ DẠNG TOÁN THƯỜNG GẶP Dạng 1: Quỹ tích điểm biểu diễn số phức là đường thẳng. Dạng 2: Quỹ tích điểm biểu diễn số phức là đường tròn. Dạng 3: Quỹ tích điểm biểu diễn số phức là Elip. C. BÀI TẬP ÁP DỤNG