Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 phòng GD ĐT thành phố Nam Định

Nội dung Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 phòng GD ĐT thành phố Nam Định Bản PDF - Nội dung bài viết Đề học sinh giỏi lớp 9 môn Toán năm 2022-2023 phòng GDĐT thành phố Nam Định Đề học sinh giỏi lớp 9 môn Toán năm 2022-2023 phòng GDĐT thành phố Nam Định Sytu xin gửi đến quý thầy cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán lớp 9 năm học 2022-2023 của phòng Giáo dục và Đào tạo thành phố Nam Định. Đề thi bao gồm các câu hỏi sau: + Đề bài 1: Cho đường tròn (O) có đường kính BC. Gọi điểm A là điểm trên tiếp tuyến tại B của đường tròn đó. Vẽ dây CE của đường tròn (O) sao cho CE song song với OA, và gọi H là điểm cắt của BE và OA. a) Chứng minh rằng AE là tiếp tuyến của đường tròn (O). b) Tia AO cắt đường tròn (O) tại hai điểm F, K (trong đó F nằm giữa O và A). Chứng minh rằng: i) FCO = FCE. ii) AK.CH = KH.CA. + Đề bài 2: Đường thẳng (d) chia tam giác ABC thành hai phần có chu vi và diện tích bằng nhau. Chứng minh rằng (d) đi qua tâm của đường tròn nội tiếp tam giác ABC. + Đề bài 3: Có 6 chiếc hộp, mỗi hộp chứa một số hạt đậu lần lượt là k1, k2, k3, k4, k5, k6 sao cho k1^3 + k2^3 + k3^3 + k3^4 + k5^3 + k6^3 = 2024. Sau đó thực hiện thuật toán chọn ngẫu nhiên ba hộp bất kỳ rồi bỏ vào mỗi hộp 1 hạt đậu. Hỏi sau một số lần thực hiện, số hạt đậu trong 6 hộp có bằng nhau không?

Nguồn: sytu.vn

Đọc Sách

Đề chọn học sinh giỏi Toán 9 năm 2020 - 2021 sở GDĐT thành phố Hà Nội
Sáng thứ Tư ngày 13 tháng 01 năm 2021, sở Giáo dục và Đào tạo thành phố Hà Nội tổ chức kỳ thi chọn học sinh giỏi (HSG) cấp thành phố môn Toán lớp 9 năm học 2020 – 2021. Đề chọn học sinh giỏi Toán 9 năm 2020 – 2021 sở GD&ĐT thành phố Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút. Trích dẫn đề chọn học sinh giỏi Toán 9 năm 2020 – 2021 sở GD&ĐT thành phố Hà Nội : + Với các số thực không âm a, b, c thỏa mãn a2 + b2 + c2 = 1, tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức Q = √(a + b) + √(b + c) + √(c + a). + Tìm tất cả các số nguyên dương x, y, z thỏa mãn 3^x + 2^y = 1 + 2^z. + Cho một hình chữ nhật có diện tích bằng 1. Năm điểm phân biệt được đặt tùy ý vào hình chữ nhật sao cho không có ba điểm nào thẳng hàng (mỗi điểm trong năm điểm đó có thể được đặt trên cạnh hoặc đặt nằm trong hình chữ nhật). a) Chứng minh mọi tam giác tạo bởi ba điểm trong năm điểm đã cho đều có diện tích không vượt quá 3. b) Với mỗi cách đặt năm điểm vào hình chữ nhật như trên, gọi N là số tam giác có ba đỉnh là ba điểm trong năm điểm đó và có diện tích không vượt quá 1. Tìm giá trị nhỏ nhất của N.
Đề học sinh giỏi Toán 9 vòng 2 năm 2020 - 2021 phòng GDĐT Ba Đình - Hà Nội
Đề học sinh giỏi Toán 9 vòng 2 năm 2020 – 2021 phòng GD&ĐT Ba Đình – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút, kỳ thi được diễn ra vào ngày 19 tháng 12 năm 2020.
Đề học sinh giỏi Toán 9 năm 2020 - 2021 phòng GDĐT thành phố Hưng Yên
Đề học sinh giỏi Toán 9 năm học 2020 – 2021 phòng GD&ĐT thành phố Hưng Yên gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút, kỳ thi được diễn ra vào ngày 21 tháng 12 năm 2020.
Đề HSG Toán 9 vòng 1 năm 2020 - 2021 trường Nguyễn Tất Thành - Hà Nội
Đề HSG Toán 9 vòng 1 năm học 2020 – 2021 trường THCS&THPT Nguyễn Tất Thành – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút, kỳ thi được diễn ra vào ngày 15 tháng 09 năm 2020.