Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phương pháp giải các dạng toán chuyên đề phân số

Tài liệu gồm 75 trang, được biên soạn bởi thầy giáo Ngô Nguyễn Thanh Duy, phân dạng và hướng dẫn giải các dạng toán chuyên đề phân số trong chương trình Số học 6. Khái quát nội dung tài liệu phương pháp giải các dạng toán chuyên đề phân số: BÀI 1 . MỞ RỘNG KHÁI NIỆM PHÂN SỐ. + Dạng 1. Biểu diễn phân số của một hình cho trước. + Dạng 2. Viết các phân số. + Dạng 3. Tính giá trị của phân số. + Dạng 4. Biểu thị các số đo theo đơn vị này dưới dạng phân số theo đơn vị khác. + Dạng 5. Viết tập hợp các số nguyên “kẹp” giữa hai phân số có tử là bội của mẫu. + Dạng 6. Tìm điều kiện để phân số tồn tại. Điều kiện để phân số có giá trị là số nguyên. BÀI 2 . PHÂN SỐ BẰNG NHAU. + Dạng 1. Nhận biết các cặp phân số bằng nhau, không bằng nhau. + Dạng 2. Tìm số chưa biết trong đẳng thức của hai phân số. + Dạng 3. Lập các cặp phân số bằng nhau từ một đẳng thức cho trước. BÀI 3 . TÍNH CHẤT CƠ BẢN CỦA PHÂN SỐ. + Dạng 1. Áp dụng tính chất cơ bản của phân số để viết các phân số bằng nhau. + Dạng 2. Tìm số chưa biết trong đẳng thức của hai phân số. + Dạng 3. Giải thích lí do bằng nhau của các phân số. BÀI 4 . RÚT GỌN PHÂN SỐ. + Dạng 1. Rút gọn phân số. Rút gọn biểu thức dạng phân số. + Dạng 2. Củng cố khái niệm phân số có kết hợp rút gọn phân số. + Dạng 3. Củng cố khái niệm hai phân số bằng nhau. + Dạng 4. Tìm phân số tối giản trong các phân số cho trước. + Dạng 5. Viết dạng tổng quát của tất cả các phân số bằng một phân số cho trước. + Dạng 6. Chứng minh một phân số là tối giản. BÀI 5 . QUY ĐỒNG MẪU NHIỀU PHÂN SỐ. + Dạng 1. Quy đồng mẫu các phân số cho trước. + Dạng 2. Bài toán đưa về việc quy đồng mẫu nhiều phân số. BÀI 6 . SO SÁNH PHÂN SỐ. + Dạng 1. So sánh các phân số cùng mẫu. + Dạng 2. So sánh các phân số không cùng mẫu. BÀI 7 . PHÉP CỘNG PHÂN SỐ. + Dạng 1. Cộng hai phân số. + Dạng 2. Điền dấu thích hợp vào ô vuông. + Dạng 3. Tìm số chưa biết trong một đẳng thức có chứa phép phép cộng phân số. + Dạng 4. So sánh phân số bằng cách sử dụng phép cộng phân số thích hợp. BÀI 8 . TÍNH CHẤT CƠ BẢN CỦA PHÉP CỘNG PHÂN SỐ. + Dạng 1 . Áp dụng các tính chất của phép cộng để tính nhanh tổng của nhiều phân số. + Dạng 2. Cộng nhiều phân số. + Dạng 3. Rèn luyện kĩ năng cộng hai phân số. BÀI 9 . PHÉP TRỪ PHÂN SỐ. + Dạng 1. Tìm số đối của một số cho trước. + Dạng 2. Trừ một phân số cho một phân số. + Dạng 3. Tìm số hạng chưa biết trong một tổng, một hiệu. + Dạng 4. Bài toán dẫn đến phép cộng phép trừ phân số. + Dạng 5. Thực hiện một dãy tính cộng và tính trừ phân số. BÀI 10 . PHÉP NHÂN PHÂN SỐ. + Dạng 1. Thực hiện phép nhân phân số. + Dạng 2. Viết một phân số dưới dạng tích của hai phân số thỏa mãn điều kiện cho trước. + Dạng 3. Tìm số chưa biết trong một đẳng thức có chứa phép nhân phân số. + Dạng 4. So sánh giá trị hai biểu thức. [ads] BÀI 11 . TÍNH CHẤT CƠ BẢN CỦA PHÉP NHÂN PHÂN SỐ. + Dạng 1. Thực hiện phép nhân phân số. + Dạng 2. Tính giá trị biểu thức. + Dạng 3. Bài toán dẫn đến phép nhân phân số. BÀI 12 . PHÉP CHIA PHÂN SỐ. + Dạng 1. Tìm số nghịch đảo của một số cho trước. + Dạng 2. Thực hiện phép chia phân số. + Dạng 3. Viết một phân số dưới dạng thương của hai phân số thỏa mãn điện kiện cho trước. + Dạng 4. Tìm số chưa biết trong một tích, một thương. + Dạng 5. Bài toán dẫn đến phép chia phân số. + Dạng 6. Tính giá trị của biểu thức. BÀI 13 . HỖN SỐ. SỐ THẬP PHÂN. PHẦN TRĂM. + Dạng 1. Viết phân số dưới dạng hỗn số và ngược lại. + Dạng 2. Viết các số đã cho dưới dạng phân số thập phân. Số thập phân, phần trăm và ngược lại. + Dạng 3. Cộng, trừ hỗn số. + Dạng 4 . Nhân, chia hỗn số. + Dạng 5. Tính giá trị của biểu thức số. + Dạng 6. Các phép tính về số thập phân. BÀI 14 . TÌM GIÁ TRỊ PHÂN SỐ CỦA MỘT SỐ CHO TRƯỚC. + Dạng 1. Tìm giá trị phân số của một số cho trước. + Dạng 2. Bài toán dẫn đến tìm giá trị phân số của một só cho trước. BÀI 15 . TÌM MỘT SỐ BIẾT GIÁ TRỊ MỘT PHÂN SỐ CỦA NÓ. + Dạng 1. Tìm một số biết giá trị một phân số của nó. + Dạng 2. Bài toán dẫn đến tìm một số biết giá trị một phân số của nó. + Dạng 3. Tìm số chưa biết trong một tổng, một hiệu. BÀI 16 . TÌM TỈ SỐ CỦA HAI SỐ. + Dạng 1. Các bài tập có liên quan đến tỉ số của hai số. + Dạng 2. Các bài tập liên quan đến tỉ số phần trăm. + Dạng 3. Các bài tập có liên quan đến tỉ lệ xích. BÀI 17 . BIỂU ĐỒ PHẦN TRĂM. + Dạng 1. Dựng biểu đồ phần trăm theo các số liệu cho trước. + Dạng 2. Đọc biểu đồ cho trước. + Dạng 3. Tính tỉ số phần trăm của các số cho trước.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề so sánh
Nội dung Chuyên đề so sánh Bản PDF Một sản phẩm chuyên đề đã được thiết kế để hỗ trợ học sinh lớp 6 trong quá trình ôn tập thi học sinh giỏi môn Toán. Tài liệu này bao gồm 105 trang, được trình bày để giúp học sinh nắm vững kiến thức trọng tâm cần đạt, hướng dẫn giải các dạng toán và tuyển chọn các bài tập chuyên đề so sánh. Nội dung được cung cấp với đáp án và lời giải chi tiết để học sinh có thể tự luyện tập.Chủ đề đầu tiên trong tài liệu là "So sánh lũy thừa". Nội dung bao gồm kiến thức cần nhớ và các dạng toán liên quan đến so sánh lũy thừa. Các dạng toán bao gồm so sánh hai số lũy thừa, so sánh biểu thức lũy thừa với một số, từ việc so sánh lũy thừa tìm cơ số chưa biết và một số bài toán khác.Chủ đề thứ hai trong tài liệu là "So sánh phân số". Nội dung bao gồm tóm tắt lý thuyết và các dạng toán liên quan đến so sánh phân số. Cung cấp nhiều phương pháp khác nhau để giúp học sinh tiếp cận vấn đề, bao gồm quy đồng mẫu dương, quy đồng tử dương, tích chéo với các mẫu dương, sử dụng số hoặc phân số làm trung gian, dùng tính chất và đổi phân số lớn hơn đơn vị ra hỗn số để so sánh.Cuối cùng, tài liệu cung cấp các bài tập tổng hợp để học sinh có thể ôn tập và kiểm tra kiến thức của mình.Tóm lại, sản phẩm chuyên đề này là một nguồn tài liệu hữu ích và cần thiết cho học sinh lớp 6 trong việc ôn tập và chuẩn bị cho kỳ thi học sinh giỏi môn Toán. Nội dung được trình bày một cách chi tiết, dễ hiểu và có đáp án cụ thể, giúp học sinh tự tin và hiệu quả trong quá trình học tập.
Chuyên đề chữ số tận cùng
Nội dung Chuyên đề chữ số tận cùng Bản PDF Tài liệu về chuyên đề chữ số tận cùng bao gồm 45 trang, nêu ra kiến thức trọng tâm cần đạt, hướng dẫn giải các dạng toán và chứa các bài tập chuyên đề chữ số tận cùng. Tài liệu này được thiết kế nhằm hỗ trợ học sinh lớp 6 trong quá trình ôn tập cho kỳ thi học sinh giỏi môn Toán.Phần trọng tâm đầu tiên của tài liệu là tóm tắt lý thuyết. Nó giới thiệu các tính chất cần lưu ý khi tính toán các số có chữ số tận cùng khác nhau. Ví dụ, các số có chữ số tận cùng là 0, 1, 5, và 6 sẽ không thay đổi sau khi được nâng lên lũy thừa bậc bất kỳ. Trong khi đó, các số có chữ số tận cùng là 4 và 9 chỉ thay đổi khi được nâng lên lũy thừa bậc lẻ. Những tính chất này cho phép ta dễ dàng xác định chữ số tận cùng của một số sau khi nâng lên lũy thừa.Phần thứ hai của tài liệu giải thích cách tìm chữ số tận cùng của hai số. Việc này đơn giản chỉ là việc tìm số dư của phép chia hai số cho 100. Tương tự, việc tìm chữ số tận cùng của ba số được thực hiện bằng cách tìm số dư của phép chia cho 1000.Tiếp theo, tài liệu giới thiệu các dạng toán liên quan đến chữ số tận cùng. Các dạng toán này bao gồm tìm một chữ số tận cùng, tìm hai chữ số tận cùng, tìm ba chữ số tận cùng, vận dụng chứng minh chia hết và vận dụng chữ số tận cùng vào bài toán liên quan đến chính phương.Cuối cùng, tài liệu cung cấp một số bài tập liên quan đến chuyên đề chữ số tận cùng. Đây là những bài tập thực tế, phù hợp với đề thi học sinh giỏi môn Toán lớp 6.Tóm lại, tài liệu về chuyên đề chữ số tận cùng được thiết kế để cung cấp kiến thức cần thiết, hướng dẫn giải toán và cung cấp bài tập cho học sinh lớp 6. Nó sẽ giúp học sinh hiểu rõ hơn về đặc điểm của các chữ số tận cùng và áp dụng chúng vào việc giải các bài toán.
Tóm tắt lý thuyết và bài tập trắc nghiệm xác suất thực nghiệm
Nội dung Tóm tắt lý thuyết và bài tập trắc nghiệm xác suất thực nghiệm Bản PDF - Nội dung bài viết Tóm tắt lý thuyết và bài tập trắc nghiệm xác suất thực nghiệmTóm tắt lý thuyếtBài tập trắc nghiệm Tóm tắt lý thuyết và bài tập trắc nghiệm xác suất thực nghiệm Sytu trân trọng giới thiệu đến quý thầy cô và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề xác suất thực nghiệm. Tài liệu này bao gồm các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp từ cơ bản đến nâng cao. Mỗi bài toán đi kèm đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán lớp 6. Tóm tắt lý thuyết Khả năng xảy ra của một sự kiện: Để nói về khả năng xảy ra của một sự kiện, chúng ta sử dụng một con số từ 0 đến 1. Khả năng xảy ra của một sự kiện là 0 khi sự kiện không xảy ra, và là 1 khi sự kiện chắc chắn xảy ra. Xác suất thực nghiệm: Khi thực hiện một hoạt động nào đó n lần và ghi nhận số lần sự kiện A xảy ra trong n lần đó, thì tỉ số giữa số lần xảy ra của sự kiện A và tổng số lần thực hiện n được gọi là xác suất thực nghiệm của sự kiện A sau n hoạt động. Bài tập trắc nghiệm File WORD của bài tập trắc nghiệm được cung cấp dành cho quý thầy cô. Các bài tập trong đó sẽ giúp các em ôn tập và kiểm tra kiến thức về xác suất thực nghiệm.
Tóm tắt lý thuyết và bài tập trắc nghiệm dữ liệu và thu thập dữ liệu
Nội dung Tóm tắt lý thuyết và bài tập trắc nghiệm dữ liệu và thu thập dữ liệu Bản PDF Sytu xin gửi tới quý thầy cô và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm về dữ liệu và thu thập dữ liệu. Tài liệu này bao gồm các thông tin cơ bản về dữ liệu, định nghĩa và cách thu thập dữ liệu thống kê. Dữ liệu là các thông tin thu được, có thể là số hoặc không phải là số. Khi thu thập dữ liệu, chúng ta có thể sử dụng nhiều phương pháp như quan sát, làm thí nghiệm, lập phiếu hỏi hoặc sử dụng nguồn dữ liệu có sẵn từ sách báo, trang web.Tài liệu cũng bao gồm bài tập trắc nghiệm được chọn lọc và phân loại theo các dạng toán, từ dễ đến khó. Mỗi bài tập đi kèm đáp án và hướng dẫn giải chi tiết, giúp các em ôn tập và rèn luyện kỹ năng giải toán một cách hiệu quả.Mong rằng tài liệu này sẽ giúp các em nắm vững kiến thức và tự tin hơn khi học môn Toán lớp 6. Đồng thời, đây cũng là công cụ hữu ích cho các thầy cô giáo trong việc giảng dạy và kiểm tra kiến thức của học sinh. Cảm ơn quý thầy cô và các em đã quan tâm và sử dụng tài liệu này. Chúc các em học tốt và thành công trong học tập.