Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn học sinh giỏi Toán 9 THCS năm 2022 - 2023 sở GDĐT Vĩnh Phúc

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 THCS cấp tỉnh năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc; kỳ thi được diễn ra vào ngày 11 tháng 01 năm 2023. Trích dẫn Đề chọn học sinh giỏi Toán 9 THCS năm 2022 – 2023 sở GD&ĐT Vĩnh Phúc : + Cho tam giác ABC có hai đường trung tuyến BM, CN cắt nhau tại điểm G. Gọi K là một điểm trên cạnh BC, đường thẳng (d1) đi qua K và song song với CN cắt AB tại D, đường thẳng (d2) đi qua K và song song với BM cắt AC tại E. Gọi I là giao điểm của hai đường thẳng KG và DE. Chứng minh rằng I là trung điểm của đoạn thẳng DE. + Cho hình thang ABCD có đáy nhỏ là AB và BC = BD. Gọi H là trung điểm của đoạn thẳng CD. Đường thẳng (d) đi qua điểm H cắt các đường thẳng AC, AD lần lượt tại E, F sao cho D nằm giữa A và F. Chứng minh rằng DBF = EBC. + Một cửa hàng bán bưởi Đoan Hùng với giá bán mỗi quả là 50000 đồng. Với giá bán này thì mỗi ngày cửa hàng chỉ bán được 40 quả. Cửa hàng dự định giảm giá bán, ước tính nếu cửa hàng cứ giảm mỗi quả 1000 đồng thì số bưởi bán tăng thêm được là 10 quả mỗi ngày. Xác định giá bán để cửa hàng thu được lợi nhuận cao nhất, biết rằng giá nhập về ban đầu cho mỗi quả bưởi là 30000 đồng.

Nguồn: toanmath.com

Đọc Sách

Đề thi HSG Toán 9 năm 2020 - 2021 phòng GDĐT thành phố Thanh Hóa
Thứ Ba ngày 06 tháng 10 năm 2020, phòng Giáo dục và Đào tạo thành phố Thanh Hóa, tỉnh Thanh Hóa tổ chức kỳ thi chọn học sinh giỏi cấp thành phố môn Toán lớp 9 năm học 2020 – 2021. Đề thi HSG Toán 9 năm 2020 – 2021 phòng GD&ĐT thành phố Thanh Hóa gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút. Trích dẫn đề thi HSG Toán 9 năm 2020 – 2021 phòng GD&ĐT thành phố Thanh Hóa : + Tìm cặp nghiệm nguyên thỏa mãn: x^2022 = y^2022 – y^1348 – y^674 + 2. + Cho tam giác ABC nhọn, các đường cao AD, BE, CF cắt nhau tại H. 1) Chứng minh tam giác AEF đồng dạng với tam giác ABC. 2) Chứng minh H là giao điểm ba đường phân giác của tam giác DEF. 3) Đặt BC = a; AC = b, AB = c; S là diện tích tam giác ABC. Chứng minh rằng: a^2 + b^2 + c^2 >= 4√3S. + Cho các số thực dương thỏa mãn abc + a + c = b. Tìm giá trị lớn nhất của biểu thức P = 2/(a^2 + 1) – 2/(b^2 + 1) + 3/(c^2 + 1).
Đề thi HSG Toán 9 cấp huyện năm 2020 - 2021 phòng GDĐT Thạch Hà - Hà Tĩnh
Thứ Sáu ngày 25 tháng 09 năm 2020, phòng Giáo dục và Đào tạo huyện Thạch Hà, tỉnh Hà Tĩnh tổ chức kỳ thi chọn học sinh giỏi huyện môn Toán lớp 9 năm học 2020 – 2021. Đề thi HSG Toán 9 cấp huyện năm 2020 – 2021 phòng GD&ĐT Thạch Hà – Hà Tĩnh gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút. Trích dẫn đề thi HSG Toán 9 cấp huyện năm 2020 – 2021 phòng GD&ĐT Thạch Hà – Hà Tĩnh : + Có 3 giỏ táo; giỏ thứ nhất có 11 trái, giỏ thứ hai có 7 trái và giỏ thứ 3 có 6 trái. Nêu cách chuyển các trái táo sao cho số táo trong 3 giỏ bằng nhau. Việc chuyển táo từ giỏ này sang giỏ kia phải thỏa mãn điều kiện số táo chuyển vào giỏ đó phải đúng bằng số táo có trong giỏ đó. + Cho tam giác ABC vuông tại A có AB < AC; vẽ đường cao AH, phân giác trong AD. Gọi M, N lần lượt là hình chiếu vuông góc của D trên AB và AC. a) Biết AB = 6 cm, AC = 8 cm. Tính AH, MN, BD. b) Gọi AE là phân giác ngoài của tam giác ABC. Chứng minh rằng: 1/AB + 1/AC = √2/AD và 1/AB – 1/AC = √2/AE. + Cho các số thực x, y, z thỏa mãn: 0 < x, y, z =< 1. Chứng minh rằng: x/(1 + y + xz) + y/(1 + z + xy) + z/(1 + x + yz) =< 3/(x + y + z).
Đề thi học sinh giỏi Toán 9 năm 2020 - 2021 phòng GDĐT Sầm Sơn - Thanh Hóa
Thứ Ba ngày 29 tháng 09 năm 2020, phòng Giáo dục và Đào tạo thành phố Sầm Sơn, tỉnh Thanh Hóa tổ chức kỳ thi chọn học sinh giỏi môn Toán lớp 9 khối THCS năm học 2020 – 2021. Đề thi học sinh giỏi Toán 9 năm 2020 – 2021 phòng GD&ĐT Sầm Sơn – Thanh Hóa gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút. Trích dẫn đề thi học sinh giỏi Toán 9 năm 2020 – 2021 phòng GD&ĐT Sầm Sơn – Thanh Hóa : + Tìm các số nguyên x, y thỏa mãn x^4 + 2y^2 – 17x^2 – 2xy + 90 = 6y. + Cho ba số nguyên dương x, y, z. Chứng minh rằng: (x – y)^5 + (y – z)^5 + (z – x)^5 chia hết cho 5(x – y)(y – z)(z – x). + Cho hình vuông ABCD. Gọi E là một điểm thuộc cạnh BC (E khác B). Tia AE cắt tia DC tại K. Kẻ đường thẳng d đi qua A và vuông góc với AE. Đường thẳng d cắt đường thẳng CD tại I. a) Chứng minh: 1/AE^2 + 1/AK^2 không đổi khi E thay đổi trên cạnh BC. b) Đường thẳng đi qua A và vuông góc với IE cắt đường thẳng CD tại M. Chứng minh rằng: 1/AE + 1/AK = √2/AM. c) Tìm vị trí của E để độ dài đoạn thẳng IK ngắn nhất.
Đề thi học sinh giỏi Toán 9 năm 2020 - 2021 phòng GDĐT Nông Cống - Thanh Hóa
Thứ Sáu ngày 25 tháng 09 năm 2020, phòng Giáo dục và Đào tạo Nông Cống, tỉnh Thanh Hóa tổ chức kỳ thi chọn học sinh giỏi cấp huyện môn Toán lớp 9 năm học 2020 – 2021. Đề thi học sinh giỏi Toán 9 năm 2020 – 2021 phòng GD&ĐT Nông Cống – Thanh Hóa gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút. Trích dẫn đề thi học sinh giỏi Toán 9 năm 2020 – 2021 phòng GD&ĐT Nông Cống – Thanh Hóa : + Chứng minh rằng tích của bốn số tự nhiên liên tiếp cộng với 1 là một số chính phương. + Tìm nghiệm nguyên của phương trình: 2xy^2 + x + y + 1 = x^2 + 2y^2 + xy. + Cho ba số tự nhiên a, b, c. Chứng minh rằng: Nếu a + b + c chia hết cho 6 thì (a + b)(b + c)(c + a) – 2abc chia hết cho 6.