Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra định kì lần 1 Toán 12 năm 2019 - 2020 trường chuyên Bắc Ninh

giới thiệu đến quý thầy, cô giáo cùng các em học sinh khối 12 đề kiểm tra định kì lần 1 Toán 12 năm học 2019 – 2020 trường THPT chuyên Bắc Ninh, kỳ thi được diễn ra vào giai đoạn giữa học kì 1 năm học 2019 – 2020. Đề kiểm tra định kì lần 1 Toán 12 năm 2019 – 2020 trường chuyên Bắc Ninh có mã đề 105, đề được biên soạn theo dạng trắc nghiệm với 50 câu hỏi và bài toán, đề gồm 06 trang, thời gian làm bài 90 phút. Trích dẫn đề kiểm tra định kì lần 1 Toán 12 năm 2019 – 2020 trường chuyên Bắc Ninh : + Mệnh đề nào trong các mệnh đề dưới đây là đúng? A. Đồ thị của hai hàm số y = log_e x và y = log_1/e x đối xứng nhau qua trục tung. B. Đồ thị của hai hàm số y = e^x và y = ln x đối xứng nhau qua đường phân giác của góc phần tử thứ nhất. C. Đồ thị của hai hàm số y = e^x và y = ln x đối xứng nhau qua đường phân giác của góc phần tử thứ hai. D. Đồ thị của hai hàm số y = e^x và y = (1/e)^x đối xứng nhau qua trục hoành. [ads] + Cho tứ diện đều ABCD có cạnh bằng 6√2. Ở bốn đỉnh tứ diện người ta cắt đi các tứ diện đều bằng nhau có cạnh bằng x. Biết khối đa diện còn lại sau khi cắt có thể tích bằng 1/2 thể tích khối tứ diện ABCD. Giá trị của x là? + Cho a và b là hai số thực dương thỏa mãn 5a^2 + 2b^2 + 5 = 2a + 4b + 4ab. Xét các hệ thức sau: Hệ thức 1: In(a + 1) + In(b + 1) = ln(a^2 + b^2 +1). Hệ thức 2: In(a^2 + 1) + In(b + 1) = In(b^2 + 1) + In(a + 1). Hệ thức 3: In(a + b + 3ab – 1) = 2ln(a + b). Hệ thức 4: ln(a + b + 2ab + 2) = 2ln(a + b). Trong các hệ thức trên có bao nhiêu hệ thức đúng?

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát chất lượng lớp 12 môn Toán đợt 1 cuối năm 2021 2022 sở GD ĐT Nam Định
Nội dung Đề khảo sát chất lượng lớp 12 môn Toán đợt 1 cuối năm 2021 2022 sở GD ĐT Nam Định Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng môn Toán lớp 12 THPT đợt 1 cuối năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Nam Định, nhằm giúp các em rèn luyện để chuẩn bị cho kì thi tốt nghiệp Trung học Phổ thông môn Toán năm 2022; kỳ thi được diễn ra vào thứ Bảy ngày 28 tháng 05 năm 2022; đề thi có đáp án mã đề Mã đề 122 Câu Mã đề 124 Câu Mã đề 126 Câu Mã đề 128. Trích dẫn đề khảo sát chất lượng Toán lớp 12 đợt 1 cuối năm 2021 – 2022 sở GD&ĐT Nam Định : + Trong không gian Oxyz, cho mặt cầu 2 2 2 S x y z 1 2 4 27. Xét điểm M thuộc mặt phẳng toạ độ Oxy sao cho từ M kẻ được ba tiếp tuyến MA MB MC đến mặt cầu S (trong đó A B C là các tiếp điểm) thỏa mãn 0 AMB 60 0 BMC 90 0 CMA 120. Độ dài đoạn OM lớn nhất bằng bao nhiêu? + Trên tập hợp số phức, xét phương trình 2 z z m 2 3 0 (với m là tham số thực). Gọi hai điểm A và B là hai điểm biểu diễn hai nghiệm của phương trình đã cho. Biết rằng ba điểm O A B là ba đỉnh của một tam giác vuông (với O là gốc toạ độ), khẳng định nào dưới đây đúng? + Cho hàm số f x là hàm số đa thức bậc năm. Biết hàm số y f x có đồ thị như hình vẽ bên. Có bao nhiêu giá trị nguyên của tham số m để hàm số 3 2 3 2021 2022 f x x m g x có 8 điểm cực trị?
Đề kiểm tra khảo sát lớp 12 môn Toán năm 2021 2022 sở GD ĐT Bình Thuận
Nội dung Đề kiểm tra khảo sát lớp 12 môn Toán năm 2021 2022 sở GD ĐT Bình Thuận Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề kiểm tra khảo sát môn Toán lớp 12 năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Bình Thuận (mã đề 021), nhằm giúp các em rèn luyện để chuẩn bị cho kỳ thi tốt nghiệp THPT 2022 môn Toán do Bộ Giáo dục và Đào tạo tổ chức. Trích dẫn đề kiểm tra khảo sát Toán lớp 12 năm 2021 – 2022 sở GD&ĐT Bình Thuận : + Diện tích hình phẳng giới hạn bởi đồ thị của hai hàm số y = x3 + 2×2 – 2mx – 1 (m là tham số) và y = x3 + x2 + 3 đạt giá trị nhỏ nhất bằng? + Trong không gian Oxyz, cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B; AD = 2AB = 2BC và SC vuông góc với mặt phẳng (ABCD). Nếu A(3;0;0), D(0;3;0), S(0;0;3) và C có hoành độ dương thì tung độ của B bằng? + Cho khối trụ (T) có bán kính R và chiều cao h = R2. Gọi A và B là hai điểm lần lượt thuộc hai đường tròn đáy của (T). Nếu góc và khoảng cách giữa đường thẳng AB và trục của (T) lần lượt là 45° và a thì thể tích của (T) bằng?
Đề khảo sát chất lượng lớp 12 môn Toán năm 2021 2022 sở GD ĐT Hải Phòng
Nội dung Đề khảo sát chất lượng lớp 12 môn Toán năm 2021 2022 sở GD ĐT Hải Phòng Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng học sinh môn Toán lớp 12 THPT năm học 2021 – 2022 sở Giáo dục và Đào tạo UBND thành phố Hải Phòng (mã đề thi 112), nhằm giúp các em rèn luyện để chuẩn bị cho kỳ thi tốt nghiệp Trung học Phổ thông môn Toán năm 2022 sắp tới; kỳ thi được diễn ra vào thứ Ba ngày 24 tháng 05 năm 2022. Trích dẫn đề khảo sát chất lượng Toán lớp 12 năm 2021 – 2022 sở GD&ĐT Hải Phòng : + Trong không gian Oxyz, cho điểm A(13;–7;–13), B(1;–1;5) và C(1;1;–3). Xét các mặt phẳng (P) đi qua C sao cho A và B nằm cùng phía so với (P). Khi d(A;(P)) + 2d(B;(P)) đạt giá trị lớn nhất thì (P) có dạng ax + by + cz + 3 = 0. Giá trị của a + b + c bằng? + Gọi (H) là hình phẳng giới hạn bởi các đường y = (x − 3)2, trục tung và trục hoành. Gọi k1, k2 (k1 > k2) là hệ số góc của hai đường thẳng cùng đi qua điểm A(0;9) và chia (H) làm ba phần có diện tích bằng nhau. Tính k1 – k2. + Cho hàm số y = f(x) có đạo hàm trên R và f'(x) = (x + 1)(x − 2). Tính tổng tất cả các giá trị nguyên của m để hàm số y = f(|2×3 − 3×2 − 12x + m|) có nhiều điểm cực trị nhất.
Đề khảo sát chất lượng lớp 12 môn Toán THPT năm 2021 2022 sở GD ĐT Thái Bình
Nội dung Đề khảo sát chất lượng lớp 12 môn Toán THPT năm 2021 2022 sở GD ĐT Thái Bình Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng môn Toán lớp 12 THPT năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Thái Bình; kỳ thi nhằm kiểm tra kiến thức đối với học sinh lớp 12 trong quá trình ôn tập chuẩn bị cho kỳ thi tốt nghiệp Trung học Phổ thông năm 2022 môn Toán. Trích dẫn đề khảo sát chất lượng Toán lớp 12 THPT năm 2021 – 2022 sở GD&ĐT Thái Bình : + Trong không gian Oxyz, cho mặt cầu (S): (x − 1)2 + (y + 2)2 + (z – 3)2 = 27. Gọi (a) là mặt phẳng đi qua hai điểm A(0;0;–4); B(2;0;0) và cắt (S) theo giao tuyến là đường tròn (C) sao cho khối nón có đỉnh là tâm của (S) và đáy là đường tròn (C) có thể tích lớn nhất. Biết rằng (a): ax + by − z + c = 0. Khi đó a − b + c bằng? + Trên tập hợp các số phức, xét phương trình z2 – 2mz + 3m + 10 = 0 (m là tham số thực). Có bao nhiêu giá trị nguyên của m để phương trình đó có hai nghiệm z1 và z2 không phải số thực thỏa mãn |z1| + |z2| =< 8? + Cho a và b là hai số thay đổi thoả mãn a > 1; b > 1 và a + b = 12. Giả sử x1; x2 là hai nghiệm của phương trình: logax.logbx − logax − logbx − 1 = 0. Giá trị lớn nhất của biểu thức P = x1.x2 là?