Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề Toán 12 ôn thi THPTQG - Lư Sĩ Pháp (Tập 1 Giải tích)

Tài liệu gồm 153 trang tuyển tập lý thuyết, phân dạng toán và bài tập trắc nghiệm có đáp án các chuyên đề Toán 12 phần Giải tích ôn thi THPT Quốc gia, tài liệu được biên soạn bởi thầy Lư Sĩ Pháp. CHUYÊN ĐỀ 1 . ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ §1. SỰ ĐỒNG BIẾN, NGHỊCH BIẾN CỦA HÀM SỐ + Dạng 1. Tìm các khoảng đồng biến, nghịch biến của hàm số đã cho + Dạng 2. Tìm tham số m ∈ R để hàm số luôn luôn đồng biến hay nghịch biến trên tập xác định của nó + Dạng 3. Tìm tham số m ∈ R để hàm số luôn luôn đồng biến hay nghịch biến trên khoảng (α; β) §2. CỰC TRỊ CỦA HÀM SỐ + Dạng 1. Tìm các điểm cực trị của hàm số y = f(x) + Dạng 2. Tìm tham số m để hàm số đạt cực đại hay cực tiểu tại điểm x0 + Dạng 3. Tìm tham số m để hàm số không có hoặc có cực trị và thỏa mãn điều kiện bài toán §3. GIÁ TRỊ LỚN NHẤT, GIÁ TRỊ NHỎ NHẤT CỦA HÀM SỐ + Dạng 1. Tìm GTLN – GTNN của hàm số trên đoạn [a; b]. Xét hàm số y = f(x) + Dạng 2. Tìm GTLN – GTNN của hàm số chứa căn thức + Dạng 3. Tìm GTLN – GTNN của hàm số trên một khoảng (a; b) + Dạng 4. Ứng dụng vào bài toán thực tế §4. ĐƯỜNG TIỆM CẬN + Dạng 1: Tìm các đường tiệm cận thông qua định nghĩa; bảng biến thiên + Dạng 2: Tìm các đường tiệm cận của hàm số nhất biến + Dạng 3: Tìm các đường tiệm đứng của hàm số khác §5. KHẢO SÁT SỰ BIẾN THIÊN VÀ VẼ ĐỒ THỊ HÀM SỐ §6. MỘT SỐ BÀI TOÁN THƯỜNG GẶP VỀ ĐỒ THỊ + Dạng 1. Biện luận số giao điểm của hai đồ thị + Dạng 2. Biện luận số nghiệm của phương trình bằng đồ thị + Dạng 3. Viết phương trình tiếp tuyến + Dạng 4. Sự tiếp xúc của các đường cong [ads] CHUYÊN ĐỀ 2 . HÀM SỐ LŨY THỪA – HÀM SỐ MŨ – HÀM SỐ LÔGARIT. PHƯƠNG TRÌNH – BẤT PHƯƠNG TRÌNH – HỆ PHƯƠNG TRÌNH MŨ – LÔGARIT + Dạng 1. Xét tính đúng sai của một mệnh đề + Dạng 2. Tính (rút gọn) biểu thức mũ và lôgarit + Dạng 3. Biểu diễn một lôgarit qua các yếu tố cho trước + Dạng 4. So sánh các biểu thức chứa mũ và lôgarit + Dạng 5. Tập xác định của hàm số + Dạng 6. Tính đạo hàm + Dạng 7. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số + Dạng 8. Giải phương trình, bất phương trình, hệ phương trình + Dạng 9. Nhận dạng đồ thị, xác định các hệ số. + Dạng 10. Bài toán thực tế CHUYÊN ĐỀ 3 . NGUYÊN HÀM – TÍCH PHÂN VÀ ỨNG DỤNG CHUYÊN ĐỀ 4 . SỐ PHỨC 1. Số phức 2. Các phép toán trên số phức 3. Mối liên hệ giữa z và z‾ 4. Phương trình bậc hai với hệ số thực 5. Cực trị số phức 6. Một số dạng cơ bản tìm giá trị lớn nhất, giá trị nhỏ nhất của |z| + Dạng 1. Cho số phức z thỏa mãn |z – (a + bi)| = R, R > 0. Tìm giá trị nhỏ nhất, lớn nhất của z + Dạng 2. Cho số phức z thỏa mãn |z – z1| = r1, r1 > 0. Tìm giá trị nhỏ nhất, giá trị lớn nhất của P = |z – z2| + Dạng 3. Cho số phức z thỏa mãn |z – z1| + |z – z2| = k, k > 0. Tìm giá trị nhỏ nhất, giá trị lớn nhất của P = |z| + Dạng 4. Cho hai số phức z1, z2 thỏa mãn z1 + z2 = m + ni và |z1 – z2| = p > 0. Tìm giá trị lớn nhất của P = |z1| + |z2| Xem thêm :  Chuyên đề Toán 11 ôn thi THPT Quốc gia – Lư Sĩ Pháp

Nguồn: toanmath.com

Đọc Sách

Bí kíp Thế Lực 2016
Tài liệu Bí kíp Thế Lực 2016 bản đầy đủ được scan từ cuốn sách cùng tên của tác giả Nguyễn Thế Lực, sách dày 216 trang bao gồm các kinh nghiệm giải toán của tác giả đối với 3 câu phân loại trong đề thi THPT Quốc gia: Phương trình – Oxy và Bất đẳng thức. Nội dung tài liệu : I. Bí kíp phương trình – bất phương trình 1. Giới thiệu, yêu cầu và các phương pháp cơ bản cần nắm vững 2. Basic Skill + Phương trình cho nghiệm đẹp + Phương trình cho nghiệm xấu + Đánh giá sau liên hợp, truy ngược dấu + Một số bài khó bấm máy – thường liên quan đến ẩn phụ 3. Advance Skill + Super Skill: Ép liên hợp + Pro Skill: Ép hàm số 4. Một số bài tập tự luyện có hướng dẫn II. Bí kíp hệ phương trình 1. Khái quát hướng giải hệ phương trình cơ bản và kiến thức cần nắm 2. Cách tìm mối quan hệ giữa x và y bằng máy tính từ 1 phương trình 3. Dạng hệ phải kết hợp 2 phương trình 4. Một số kỹ năng bổ trợ giải hệ phương trình 5. Các bài tập rèn luyện [ads] III. Bí kíp Oxy 1. Các kiến thức cần nhớ 2. Tư duy giải Oxy 3. Các bổ đề phụ cần biết, cách chứng minh và áp dụng 4. Chuẩn hóa Oxy 5. Các bước làm một bài toán Oxy 6. Hệ thống bài tập rèn luyện có lời giải IV. Bí kíp bất đẳng thức 1. Kiến thức cần nhớ và hướng làm chung 2. Bấm máy cày dấu bằng “=” 3. Một số bất đẳng thức đánh giá tại biên 4. Kinh nghiệm giải bất đẳng thức 5. Hệ thống bài tập rèn luyện
Các chuyên đề luyện thi THPT Quốc gia môn Toán - Nguyễn Văn Lực
Tài liệu Các chuyên đề luyện thi THPT Quốc gia môn Toán của tác giả Nguyễn Văn Lực gồm 372 trang. Tài liệu là hệ thống các bài tập được chọn lọc và giải chi tiết, phân loại theo từng chuyên đề.
Kĩ năng sử dụng máy tính Casio trong giải toán - Bùi Thế Việt
Trong các dụng cụ học tập được phép mang vào phòng thi trong các kỳ thi đại học, kỳ thi THPT Quốc Gia thì máy tính cầm tay là dụng cụ không thể thiếu giúp chúng ta tính toán nhanh chóng. Tuy nhiên, máy tính cầm tay sẽ là trợ thủ đắc lực để giải toán, đặc biệt là giải Phương Trình, Hệ Phương Trình, Bất Phương Trình … hay kể cả là Bất Đẳng Thức. Mình (tác giả Bùi Thế Việt) là một người rất đam mê với những kỹ năng, thủ thuật sử dụng máy tính cầm tay trong giải toán. Mình đã áp dụng nó vào đề thi THPT Quốc Gia 2015. Chỉ trong 3 – 5 phút, mình đã đưa ra lời giải chính xác cho câu Phương Trình Vô Tỷ và cũng chỉ gần 1 giờ, mình đã hoàn thành xong bài làm với điểm số tuyệt đối, là 1 trong 85/671.149 người được điểm tối đa. Vậy sử dụng sao cho hiệu quả? Hãy đến với chuyên đề Kỹ Năng Sử Dụng CASIO Trong Giải Toán. Chuyên đề này chưa phải là tất cả những Thủ Thuật mà mình đưa tới cho bạn đọc. Tuy không nhiều nhưng các thủ thuật dưới đây sẽ mang tới sự kỳ diệu mà chiếc máy tính CASIO có thể mang lại. [ads] Chuyên đề giới thiệu 8 kĩ năng sử dụng máy tính CASIO trong việc giải toán: 1. Thủ thuật sử dụng CASIO để rút gọn biểu thức. 2. Thủ thuật sử dụng CASIO để giải phương trình bậc 4. 3. Thủ thuật sử dụng CASIO để tìm nghiệm phương trình. 4. Thủ thuật sử dụng CASIO để phân tích đa thức thành nhân tử một ẩn. 5. Thủ thuật sử dụng CASIO để phân tích đa thức thành nhân tử hai ẩn. 6. Thủ thuật sử dụng CASIO để giải hệ phương trình. 7. Thủ thuật sử dụng CASIO để tích nguyên hàm, tích phân. 8. Thủ thuật sử dụng CASIO để giải bất đẳng thức.
Chuyên đề bài toán thực tế - Đoàn Văn Bộ
Tài liệu gồm 16 trang hướng dẫn phương pháp giải các bài toán thực tế thường gặp do tác giả Đoàn Văn Bộ biên soạn. Ý tưởng giải bài toán này là dựa vào phần kiến thức BẤT PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN và HỆ BẤT PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN mà rất nhiều giáo viên ở Trung học phổ thông đã bỏ qua, không dạy các em học sinh. Việc giải một số bài toán kinh tế thường dẫn đến việc xét những hệ bất phương trình bậc nhất hai ẩn và giải chúng. Loại bài toán này được nghiên cứu trong một ngành toán học với tên gọi là Quy hoạch tuyến tính. Tuy nhiên, đối với cấp bậc trung học phổ thông, ta chỉ xem xét và giải những bài toán đơn giản. Ngoài ra, tôi còn đề cập đến một số bài toán thực tế ở một số lý thuyết phần khác như: Đạo hàm, Khảo sát hàm số … Hy vọng qua chuyên đề này, khi các bạn gặp bài toán này trong đề thi THPT Quốc gia các bạn có thể làm được. [ads]