Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG Toán 11 năm 2023 - 2024 cụm huyện Yên Dũng - Bắc Giang

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi văn hóa môn Toán 11 năm học 2023 – 2024 cụm trường THPT huyện Yên Dũng, tỉnh Bắc Giang; đề thi có đáp án và hướng dẫn chấm điểm mã đề 107 108 109 110 111. Trích dẫn Đề thi HSG Toán 11 năm 2023 – 2024 cụm huyện Yên Dũng – Bắc Giang : + Một anh sinh viên T nhập học đại học vào tháng năm . Bắt đầu từ tháng năm 2023, cứ vào ngày mồng một hàng tháng anh vay ngân hàng triệu đồng với lãi suất cố định /tháng. Lãi tháng trước được cộng vào số nợ để tiếp tục tính lãi cho tháng tiếp theo (lãi kép). Vào ngày mồng một hàng tháng kể từ tháng năm 2025 về sau anh không vay ngân hàng nữa và anh còn trả được cho ngân hàng triệu đồng do việc làm thêm. Hỏi ngay sau khi kết thúc ngày anh ra trường anh còn nợ ngân hàng bao nhiêu tiền (làm tròn đến hàng nghìn đồng)? + Lớp 11A có 50 học sinh, trong đó có 30 học sinh thích học môn Toán, 28 học sinh thích học môn Văn và 6 học sinh không thích học cả Toán và Văn. Chọn ngẫu nhiên một học sinh từ lớp đó. Xác suất để học sinh được chọn chỉ thích học môn Toán mà không thích học môn Văn là? + Một rạp hát có 25 hàng ghế, mỗi hàng có 20 ghế. Trong một buổi biểu diễn ca nhạc, rạp hát đó đã bán được vừa hết số vé tương ứng với số ghế trong rạp hát. Tính số tiền thu được từ việc bán vé, biết rằng giá mỗi vé ở hàng ghế thứ nhất là 500000 đồng và giá vé của hàng ghế sau ít hơn giá vé ở hàng ghế liền trước 15000 đồng.

Nguồn: toanmath.com

Đọc Sách

Đề thi HSG Toán 11 năm 2023 - 2024 trường THPT Đông Sơn 1 - Thanh Hóa
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp trường môn Toán 11 năm học 2023 – 2024 trường THPT Đông Sơn 1, tỉnh Thanh Hóa. Đề thi được biên soạn theo cấu trúc trắc nghiệm mới nhất, với nội dung gồm 03 phần: Câu trắc nghiệm nhiều phương án lựa chọn; Câu trắc nghiệm đúng sai; Câu trắc nghiệm trả lời ngắn. Đề thi có đáp án mã đề 001 – 002. Trích dẫn Đề thi HSG Toán 11 năm 2023 – 2024 trường THPT Đông Sơn 1 – Thanh Hóa : + Hằng ngày bạn Hùng đều đón bạn Minh đi học tại một vị trí trên lề đường thẳng đến trường. Minh đứng tại vị trí A cách lề đường một khoảng 50m để chờ Hùng. Khi nhìn thấy Hùng đạp xe đến địa điểm B, cách mình một đoạn 200m thì Minh bắt đầu đi bộ ra lề đường để bắt kịp xe. Vận tốc đi bộ Minh là 5 km h, vận tốc xe đạp của Hùng là 15km h. Hãy xác định vị trí C trên lề đường để hai bạn gặp nhau mà không bạn nào phải chờ người kia (làm tròn kết quả đến hàng phần mười). + Aladin nhặt được cây đèn thần, chàng miết tay vào cây đèn và gọi Thần đèn ra. Thần đèn cho chàng 3 điều ước. Aladin ước 2 điều đầu tiên tùy thích, nhưng điều ước thứ 3 của chàng là: “Ước gì ngày mai tôi lại nhặt được cây đèn và Thần cho tôi số điều ước gấp đôi số điều ước ngày hôm nay”. Thần đèn chấp thuận và mỗi ngày Aladin đều thực hiện theo quy tắc như trên: ước hết các điều đầu tiên và luôn chừa lại điều ước cuối cùng để kéo dài thỏa thuận với thần đèn cho ngày hôm sau. Hỏi sau 10 ngày gặp Thần đèn, Aladin ước tất cả bao nhiêu điều ước? + Khi một quả bóng được đá lên, nó sẽ đạt đến độ cao nào đó rồi rơi xuống. Biết quỹ đạo của quả bóng là một cung Parabol trong mặt phẳng với hệ tọa độ Oth, trong đó t là thời gian (tính bằng giây), kể từ khi quả bóng được đá lên, h là độ cao (tính bằng mét) của quả bóng. Giả thiết rằng quả bóng được đá lên từ độ cao 1,2m. Sau đó 1giây, nó đạt độ cao 8,5m và 2 giây sau khi đá nó lên, nó ở độ cao 6m. Sau bao lâu thì quả bóng sẽ chạm đất kể từ khi đá lên (Tính chính xác đến hàng phần trăm)?
Đề thi Olympic Toán 11 năm 2023 - 2024 cụm Hà Đông Hoài Đức - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi Olympic dành cho học sinh môn Toán 11 năm học 2023 – 2024 cụm trường THPT Hà Đông & Hoài Đức, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 28 tháng 03 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi Olympic Toán 11 năm 2023 – 2024 cụm Hà Đông & Hoài Đức – Hà Nội : + Cứ vào đầu mỗi tháng, ông A đến gửi tiết kiệm ngân hàng số tiền 10 triệu đồng với lãi suất là 0,5% / tháng theo hình thức lãi kép. Hỏi sau đúng 5 năm thì ông A nhận được số tiền cả gốc và lãi là bao nhiêu, biết rằng trong suốt quá trình gửi, ông A không rút tiền ra và lãi suất của ngân hàng không thay đổi. + Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B AB BC a AD a 2. Biết SA vuông góc với đáy ABCD và SA a. 1) Tính sin của góc giữa đường thẳng BD và mặt phẳng SAC 2) Gọi M là một điểm thay đổi trên cạnh CD M (khác C và D). Mặt phẳng qua M và song song với mặt phẳng SBC cắt các cạnh AB SA SD lần lượt tại N P và Q. Chứng minh tứ giác MNPQ là hình thang vuông. 3) Khi M thay đổi, tìm giá trị lớn nhất của diện tích tứ giác MNPQ. + Cho dãy số un xác định bởi 6 n. Tìm số hạng tổng quát n u và tính giới hạn m 4.
Đề thi Olympic Toán 11 năm 2023 - 2024 cụm Hoàn Kiếm Hai Bà Trưng - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi Olympic môn Toán 11 năm học 2023 – 2024 cụm trường THPT Hoàn Kiếm & Hai Bà Trưng, thành phố Hà Nội; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi Olympic Toán 11 năm 2023 – 2024 cụm Hoàn Kiếm & Hai Bà Trưng – Hà Nội : + Cho bất phương trình log 2 log 3 1 0 x. 1) Giải bất phương trình đã cho khi m 2. 2) Tìm các giá trị của m để bất phương trình đã cho nghiệm đúng với mọi x thuộc khoảng 23. + Gọi S là tập hợp các số tự nhiên có 7 chữ số sao cho trong mỗi số đó chữ số 0 xuất hiện đúng 3 lần. Chọn ngẫu nhiên một số thuộc S, tính xác suất để số đó chia hết cho 5. + Cho hình chóp S.ABC có cạnh 6 a SB các cạnh còn lại của hình chóp bằng a. Gọi I là trung điểm AC. 1) Chứng minh SI vuông góc với đường thẳng BC. 2) Tính cosin của góc giữa hai đường thẳng AB và SC. 3) Gọi G và G’ lần lượt là trọng tâm của tam giác ABC và tam giác SAC. Một mặt phẳng đi qua G và G’ cắt hai cạnh SA SC lần lượt tại M và N. Khi MN đạt giá trị nhỏ nhất, tính diện tích của tam giác GMN.