Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phân dạng câu hỏi và bài tập trong đề thi chính thức THPT Quốc gia 2018 môn Toán

Tài liệu gồm 71 trang phân dạng câu hỏi và bài tập trong đề thi chính thức THPT Quốc gia 2018 môn Toán theo các đơn vị kiến thức tương ứng với các nội dung bài học. Tài liệu được biên soạn theo hình thức LaTex, các câu hỏi và bài tập trong tài liệu đều được phân tích và giải chi tiết. Tài liệu thích hợp cho các em học sinh khối 12 dùng để rèn luyện chuẩn bị cho kỳ thi THPT Quốc gia năm 2019 môn Toán. Nội dung tài liệu phân dạng câu hỏi và bài tập trong đề thi chính thức THPT Quốc gia 2018 môn Toán : ĐẠI SỐ & GIẢI TÍCH 11 Chương 2 . Tổ hợp. Xác suất. Nhị thức Newton §1. Hoán vị-chỉnh hợp-tổ hợp Dạng toán. Bài toán chỉ sử dụng P hoặc C hoặc A. §2. Nhị thức Newton Dạng toán. Tìm hệ số, số hạng trong khai triển nhị thức Newton. §3. Xác suất của biến cố Dạng toán 1. Tính xác suất bằng định nghĩa. Dạng toán 2. Tính xác suất bằng công thức nhân. Chương 3 . Dãy số – Cấp số cộng- Cấp số nhân §1. Dãy số Dạng toán. Tìm hạng tử trong dãy số. Chương 4 . Giới hạn §1. Giới hạn của dãy số Dạng toán. Dùng phương pháp đặt thừa số. §2. Giới hạn của hàm số Dạng toán. Dạng vô cùng chia vô cùng, số chia vô cùng. HÌNH HỌC 11 Chương 3 . Véc-tơ trong không gian. Quan hệ vuông góc trong không gian §1. Hai đường thẳng vuông góc Dạng toán. Xác định góc giữa hai đường thẳng (dùng định nghĩa). §2. Đường thẳng vuông góc với mặt phẳng Dạng toán 1. Xác định quan hệ vuông góc giữa đường thẳng và mặt phẳng, đường thẳng và đường thẳng. Dạng toán 2. Xác định góc giữa hai mặt phẳng, đường thẳng và mặt phẳng. §3. Hai mặt phẳng vuông góc Dạng toán. Xác định góc giữa hai mặt phẳng, đường và mặt. §4. Khoảng cách Dạng toán 1. Tính độ dài đoạn thẳng và khoảng cách từ một điểm đến một đường thẳng. Dạng toán 2. Khoảng cách từ một điểm đến một mặt phẳng. Dạng toán 3. Khoảng cách giữa hai đường thẳng chéo nhau. GIẢI TÍCH 12 Chương 1 . Ứng dụng đạo hàm để khảo sát hàm số §1. Sự đồng biến và nghịch biến của hàm số Dạng toán 1. Xét tính đơn điệu của hàm số cho bởi công thức. Dạng toán 2. Xét tính đơn điệu dựa vào bảng biến thiên, đồ thị. Dạng toán 3. Tìm tham số m để hàm số đơn điệu. Dạng toán 4. Ứng dụng tính đơn điệu để chứng minh bất đẳng thức, giải phương trình, bất phương trình, hệ phương trình. §2. Cực trị của hàm số Dạng toán 1. Tìm cực trị của hàm số cho bởi công thức. Dạng toán 2. Tìm cực trị dựa vào bảng biến thiên, đồ thị. Dạng toán 3. Tìm m để hàm số đạt cực trị tại 1 điểm x0 cho trước. Dạng toán 4. Tìm m để hàm số, đồ thị hàm số trùng phương có cực trị thỏa mãn điều kiện. Dạng toán 5. Tìm m để hàm số, đồ thị hàm số các hàm số khác có cực trị thỏa mãn điều kiện. §3. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số Dạng toán 1. GTLN, GTNN trên đoạn [a;b]. Dạng toán 2. GTLN, GTNN trên khoảng. Dạng toán 3. Ứng dụng GTNN, GTLN trong bài toán phương trình, bất phương trình, hệ phương trình. Dạng toán 4. Bài toán ứng dụng, tối ưu, thực tế. §4. Đường tiệm cận Dạng toán 1. Bài toán xác định các đường tiệm cận của hàm số (không chứa tham số) hoặc biết BBT, đồ thị. Dạng toán 2. Bài toán xác định các đường tiệm cận của hàm số có chứa tham số. §5. Khảo sát sự biến thiên và vẽ đồ thị hàm số Dạng toán 1. Nhận dạng đồ thị, bảng biến thiên. Dạng toán 2. Biện luận số giao điểm dựa vào đồ thị, bảng biến thiên. Dạng toán 3. Sự tương giao của hai đồ thị (liên quan đến tọa độ giao điểm). Dạng toán 4. Phương trình tiếp tuyến của đồ thị hàm số. Chương 2 . Hàm số lũy thừa – Hàm số mũ và Hàm số lô-ga-rít §1. Lũy thừa Dạng toán 1. Tính giá trị của biểu thức chứa lũy thừa. Dạng toán 2. Biến đổi, rút gọn, biểu diễn các biểu thức chứa lũy thừa. §2. Hàm số lũy thừa Dạng toán 1. Tập xác định của hàm số chứa hàm lũy thừa. Dạng toán 2. Đạo hàm hàm số lũy thừa. §3. Lô-ga-rít Dạng toán 1. Tính giá trị biểu thức chứa lô-ga-rít. Dạng toán 2. Biến đổi, rút gọn, biểu diễn biểu thức chứa lô-ga-rít. Dạng toán 3. So sánh các biểu thức lô-ga-rít. §4. Hàm số mũ. Hàm số lô-ga-rít Dạng toán 1. Tập xác định của hàm số mũ, hàm số lô-ga-rít. Dạng toán 2. Tính đạo hàm hàm số mũ, hàm số lô-ga-rít. Dạng toán 3. Khảo sát sự biến thiên và vẽ đồ thị của hàm số mũ, lô-ga-rít. Dạng toán 4. Tìm giá trị lớn nhất, nhỏ nhất của biểu thức chứa hàm mũ, hàm lô-ga-rít. Dạng toán 5. Bài toán thực tế. §5. Phương trình mũ và phương trình lô-ga-rít Dạng toán 1. Phương trình cơ bản. Dạng toán 2. Phương pháp đưa về cùng cơ số. Dạng toán 3. Phương pháp đặt ẩn phụ. Dạng toán 4. Phương pháp hàm số, đánh giá. Dạng toán 5. Bài toán thực tế. §6. Bất phương trình mũ và lô-ga-rít Dạng toán 1. Bất phương trình cơ bản. Dạng toán 2. Phương pháp đưa về cùng cơ số. Dạng toán 3. Phương pháp đặt ẩn phụ. [ads] Chương 3 . Nguyên hàm, tích phân và ứng dụng §1. Nguyên hàm Dạng toán 1. Định nghĩa, tính chất và nguyên hàm cơ bản. Dạng toán 2. Phương pháp đổi biến số. Dạng toán 3. Phương pháp nguyên hàm từng phần. §2. Tích phân Dạng toán 1. Định nghĩa, tính chất và tích phân cơ bản. Dạng toán 2. Phương pháp đổi biến số. Dạng toán 3. Phương pháp tích phân từng phần. Dạng toán 4. Tích phân của hàm ẩn. Tích phân đặc biệt. §3. Ứng dụng của tích phân Dạng toán 1. Diện tích hình phẳng được giới hạn bởi các đồ thị. Dạng toán 2. Bài toán thực tế sử dụng diện tích hình phẳng. Dạng toán 3. Thể tích giới hạn bởi các đồ thị (tròn xoay). Dạng toán 4. Thể tích tính theo mặt cắt S(x). Dạng toán 5. Bài toán thực tế và ứng dụng thể tích. Dạng toán 6. Ứng dụng tích phân vào bài toán liên môn (lý, hóa, sinh, kinh tế). Chương 4 . Số phức §1. Khái niệm số phức Dạng toán 1. Xác định các yếu tố cơ bản của số phức. Dạng toán 2. Biểu diễn hình học cơ bản của số phức. Dạng toán 3. Câu hỏi lý thuyết. §2. Phép cộng, trừ và nhân số phức Dạng toán 1. Thực hiện phép tính. Dạng toán 2. Xác định các yếu tố cơ bản của số phức qua các phép toán. Dạng toán 3. Bài toán tập hợp điểm. §3. Phép chia số phức Dạng toán 1. Bài toán quy về giải phương trình, hệ phương trình nghiệm thực. Dạng toán 2. Bài toán tập hợp điểm. §4. Phương trình bậc hai hệ số thực Dạng toán 1. Giải phương trình. Tính toán biểu thức nghiệm. Dạng toán 2. Phương trình quy về bậc hai. §5. Cực trị Dạng toán. Phương pháp hình học. HÌNH HỌC 12 Chương 1 . Khối đa diện §1. Khái niệm về khối đa diện Dạng toán 1. Nhận diện hình đa diện, khối đa diện. Dạng toán 2. Xác định số đỉnh, cạnh, mặt bên của một khối đa diện. Dạng toán 3. Phép biến hình trong không gian. §2. Khối đa diện lồi và khối đa diện đều Dạng toán. Nhận diện loại đa diện đều. §3. Khái niệm về thể tích của khối đa diện Dạng toán 1. Diện tích xung quanh, diện tích toàn phần của khối đa diện. Dạng toán 2. Tính thể tích các khối đa diện. Dạng toán 3. Các bài toán khác (góc, khoảng cách …) liên quan đến thể tích khối đa diện. Chương 2 . Mặt nón, mặt trụ, mặt cầu §1. Khái niệm về mặt tròn xoay Dạng toán 1. Thể tích khối nón, khối trụ. Dạng toán 2. Diện tích xung quanh, diện tích toàn phần, độ dài đường sinh, chiều cao, bán kính đáy, thiết diện. Dạng toán 3. Bài toán thực tế về khối nón, khối trụ. §2. Mặt cầu Dạng toán 1. Bài toán sử dụng định nghĩa, tính chất, vị trí tương đối. Dạng toán 2. Khối cầu ngoại tiếp khối đa diện. Dạng toán 3. Bài toán tổng hợp về khối nón, khối trụ, khối cầu. Chương 3 . Phương pháp tọa độ trong không gian §1. Hệ tọa độ trong không gian Dạng toán 1. Tìm tọa độ điểm, véc-tơ liên quan đến hệ trục Oxyz. Dạng toán 2. Tích vô hướng và ứng dụng. Dạng toán 3. Phương trình mặt cầu (xác định tâm, bán kính, viết phương trình mặt cầu đơn giản, vị trí tương đối hai mặt cầu, điểm đến mặt cầu, đơn giản). Dạng toán 4. Các bài toán cực trị. §2. Phương trình mặt phẳng Dạng toán 1. Tích có hướng và ứng dụng. Dạng toán 2. Xác định VTPT. Dạng toán 3. Viết phương trình mặt phẳng. Dạng toán 4. Tìm tọa độ điểm liên quan đến mặt phẳng. Dạng toán 5. Khoảng cách. Dạng toán 6. Vị trí tương đối giữa hai mặt phẳng, giữa mặt cầu và mặt phẳng. §3. Phương trình đường thẳng trong không gian Dạng toán 1. Xác định VTCP. Dạng toán 2. Viết phương trình đường thẳng. Dạng toán 3. Tìm tọa độ điểm liên quan đến đường thẳng. Dạng toán 4. Góc. Dạng toán 5. Khoảng cách. Dạng toán 6. Vị trí tương đối giữa hai đường thẳng, giữa đường thẳng và mặt phẳng. Dạng toán 7. Bài toán liên quan giữa đường thẳng – mặt phẳng – mặt cầu.

Nguồn: toanmath.com

Đọc Sách

Trắc nghiệm tổng ôn THPTQG 2018 môn Toán Lục Trí Tuyên
Nội dung Trắc nghiệm tổng ôn THPTQG 2018 môn Toán Lục Trí Tuyên Bản PDF - Nội dung bài viết Giới thiệu về tài liệu Trắc nghiệm tổng ôn THPTQG 2018 môn Toán của thầy Lục Trí Tuyên Giới thiệu về tài liệu Trắc nghiệm tổng ôn THPTQG 2018 môn Toán của thầy Lục Trí Tuyên Tài liệu này bao gồm 155 trang chứa 1331 câu hỏi trắc nghiệm tổng ôn THPTQG 2018 môn Toán, với đáp án chi tiết. Tài liệu được biên soạn bởi thầy Lục Trí Tuyên, chuyên gia trong lĩnh vực Toán học. Các chủ đề được bao gồm trong tài liệu kể vị Toán lớp 11 và Toán lớp 12. Trong phần Tổng ôn lớp 11, bạn sẽ tìm thấy các chủ đề như Hàm số và phương trình lượng giác, Tổ hợp – Xác suất, Dãy số, Cấp số cộng – Cấp số nhân, Giới hạn, Hàm số liên tục, Đạo hàm, Ý nghĩa của đạo hàm, Phép biến hình trong mặt phẳng, Quan hệ song song trong không gian, và Quan hệ vuông góc trong không gian. Trong phần Tổng ôn lớp 12, tài liệu tập trung vào các chủ đề Hàm số, Mũ và Logarit, Nguyên hàm – Tích phân, Số phức, Khối đa diện, Thể tích khối tròn xoay, và Tọa độ trong không gian. Với nội dung phong phú, chi tiết và đa dạng các chủ đề, tài liệu Trắc nghiệm tổng ôn THPTQG 2018 môn Toán của thầy Lục Trí Tuyên sẽ là công cụ hữu ích giúp bạn ôn tập hiệu quả và chuẩn bị tốt cho kỳ thi quan trọng.
Chuyên đề lớp 11 môn Toán ôn thi THPT Quốc gia Lư Sĩ Pháp
Nội dung Chuyên đề lớp 11 môn Toán ôn thi THPT Quốc gia Lư Sĩ Pháp Bản PDF - Nội dung bài viết Chuyên đề lớp 11 môn Toán ôn thi THPT Quốc gia Lư Sĩ Pháp Chuyên đề lớp 11 môn Toán ôn thi THPT Quốc gia Lư Sĩ Pháp Được biên soạn bởi thầy Lư Sĩ Pháp, cuốn tài liệu này gồm 96 trang tổng hợp lý thuyết và bài tập trắc nghiệm có đáp án các chuyên đề Toán lớp 11 nhiều khả năng xuất hiện trong đề thi THPT Quốc gia môn Toán. Tài liệu này bám sát chương trình chuẩn và chương trình nâng cao về môn Toán do Bộ Giáo dục và Đào tạo quy định. Các chuyên đề trong tài liệu bao gồm: Chuyên đề 1: Lượng giác Chuyên đề 2: Tổ hợp và xác suất Chuyên đề 3: Dãy số, cấp số cộng và cấp số nhân Chuyên đề 4: Giới hạn Chuyên đề 5: Phép dời hình và phép đồng dạng Mỗi chuyên đề được chia thành hai phần: Phần lý thuyết: Nắm vững lý thuyết cần thiết cho mỗi chuyên đề. Phần trắc nghiệm: Tổng hợp bài tập trắc nghiệm đa dạng, phong phú và bám sát cấu trúc thi của Bộ Giáo dục và Đào tạo. Đây là tài liệu hữu ích để học sinh lớp 11 ôn tập chuẩn bị cho kì thi THPT Quốc gia môn Toán. Việc tự học và rèn luyện thông qua tài liệu này sẽ giúp học sinh nắm vững kiến thức cần thiết và tự tin hơn khi tham dự kỳ thi quan trọng.
Công phá kỹ thuật Casio Nguyễn Ngọc Nam, Ngọc Huyền LB
Nội dung Công phá kỹ thuật Casio Nguyễn Ngọc Nam, Ngọc Huyền LB Bản PDF - Nội dung bài viết Giới thiệu về sách Công phá kỹ thuật CasioNội dung chính của sách Giới thiệu về sách Công phá kỹ thuật Casio Sytu đem đến cho bạn đọc bản PDF xem trước của cuốn sách Công phá kỹ thuật Casio – một nguồn tư liệu quý giá giúp bạn tự tin hơn khi học Toán ở các cấp độ lớp 10, 11, 12. Cuốn sách này có tổng cộng 496 trang và được biên soạn bởi hai tác giả tài năng Nguyễn Ngọc Nam và Ngọc Huyền LB. Nội dung chính của sách Trước hết, trong phần 1 của sách, bạn sẽ được giới thiệu tổng quan về các tính năng trên máy tính Casio cầm tay. Tất cả các phím chức năng và công dụng của chúng được trình bày một cách chi tiết và đầy đủ, giúp bạn hiểu rõ hơn về cách sử dụng máy tính Casio trong giải toán, đặc biệt phù hợp với những học sinh mới bắt đầu làm quen với máy tính này. Phần 2 của sách tập trung vào các chủ đề Toán sử dụng máy tính Casio, bao gồm 11 chủ đề từ lớp 10 đến lớp 12. Các chủ đề này bao gồm cả đại số, giải tích và hình học, với nội dung về hàm số, giới hạn, tổ hợp, xác suất, hàm số lượng giác, phương trình, hệ phương trình, bất phương trình, và nhiều nội dung khác. Mỗi chủ đề được trình bày kỹ lưỡng, cung cấp ví dụ và bài tập rèn luyện, giúp bạn hiểu rõ hơn cách giải và áp dụng công thức vào thực tế. Cuối cùng, sách còn cung cấp các kỹ thuật bổ trợ, công thức giải nhanh cùng ví dụ áp dụng và hướng dẫn chi tiết để bạn có thể áp dụng kiến thức một cách linh hoạt và hiệu quả.
Hướng dẫn giải một số bài toán ứng dụng thực tiễn Trần Hoàng Long
Nội dung Hướng dẫn giải một số bài toán ứng dụng thực tiễn Trần Hoàng Long Bản PDF - Nội dung bài viết Tài liệu Hướng dẫn giải bài toán thực tiễn của Trần Hoàng Long Tài liệu Hướng dẫn giải bài toán thực tiễn của Trần Hoàng Long Tài liệu này bao gồm 71 trang chọn lọc và hướng dẫn chi tiết cách giải một số bài toán thực tế sử dụng kiến thức Toán từ lớp 10 đến lớp 12. Việc áp dụng kiến thức toán học vào việc giải quyết các vấn đề thực tế là một phần quan trọng trong quá trình dạy và học toán ở trường phổ thông. Điều này được thể hiện rõ trong đề thi THPT quốc gia và các đề thi minh họa từ Bộ Giáo dục. Trong chương trình sách giáo khoa Toán hiện tại, đặc biệt là trong chương trình Đại số và Giải tích, có nhiều chủ đề kiến thức có thể được áp dụng vào việc giải quyết bài toán thực tế, như Hệ bất phương trình bậc nhất hai ẩn, Phương trình bậc hai, Bất phương trình bậc hai (lớp 10), Giải tích tổ hợp, Xác suất, Cấp số cộng, Cấp số nhân (lớp 11), Đạo hàm (lớp 12) và nhiều chủ đề khác. Qua tài liệu này, Trần Hoàng Long đã phân loại bài tập theo từng chủ đề kiến thức, tập trung vào việc sưu tầm các tình huống thực tiễn để từ đó tạo ra các bài toán thực tế cần giải quyết, áp dụng kiến thức toán học để giải quyết vấn đề. Ông cũng xây dựng hệ thống bài toán thực tế theo từng chủ đề kiến thức, giúp học sinh rèn luyện kỹ năng áp dụng kiến thức toán vào thực tiễn. Các chủ đề trong tài liệu bao gồm: Đạo hàm: Một công cụ quan trọng để tìm cực trị, giá trị lớn nhất, nhỏ nhất của hàm số. Được áp dụng để giải quyết những bài toán thực tế hấp dẫn và ý nghĩa. Hàm số: Từ tình huống thực tế, ta thu thập số liệu, lập hàm số và khảo sát để đưa ra phương án tối ưu. Hệ bất phương trình bậc nhất hai ẩn: Chủ đề này khai thác nhiều dạng toán gần gũi với cuộc sống như bài toán vận tải, sản xuất đồng bộ, lập kế hoạch sản xuất, vốn đầu tư nhỏ nhất, pha trộn v.v. Tài liệu này hướng đến việc giúp học sinh áp dụng kiến thức toán học vào thực tiễn một cách hiệu quả, và mong muốn nhận được phản hồi tích cực từ giáo viên và học sinh để cải thiện tài liệu trong tương lai.