Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi cấp tỉnh Toán 9 năm 2022 - 2023 sở GDĐT Lâm Đồng

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 THCS năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Lâm Đồng; kỳ thi được diễn ra vào thứ Sáu ngày 03 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán 9 năm 2022 – 2023 sở GD&ĐT Lâm Đồng : + An mua một chiếc laptop cũ đã qua sử dụng 1 năm tại cửa hàng X với số tiền là 29,6 triệu đồng. Sau khi sử dụng được thêm 3 năm nữa, An mang chiếc laptop đó ra cửa hàng X để bán, cửa hàng mua lại với số tiền 17 triệu đồng. An thắc mắc về sự chênh lệch nhiều giữa giá mua và giá bán nên được nhân viên cửa hàng giải thích về mối liên hệ giữa giá tiền của một chiếc laptop với thời gian sử dụng biểu thị dưới dạng một hàm số y = ax + b (x là số năm sử dụng, y là giá tiền). Hãy tính giá tiền ban đầu của chiếc laptop nêu trên khi chưa qua sử dụng. + Hưởng ứng phong trào viết thư gửi các bạn thiếu nhi tại huyện đảo Trường Sa nhân dịp Tết Nguyên đán, hai bạn Lâm và Đồng mua số tờ giấy trắng bằng nhau và mua số phong bì bằng nhau. Lâm sử dụng một tờ giấy cho mỗi bức thư trong khi đó Đồng sử dụng ba tờ giấy cho mỗi bức thư. Biết rằng, Lâm dùng hết số phong bị đã mua còn dư 10 tờ giấy, Đồng dùng hết số giấy đã mua còn dư 10 phong bì. Tìm số tờ giấy mỗi bạn đã mua. + Một cửa hàng bán giày thể thao mỗi tuần bán được 50 đôi giày với giá là 500 nghìn đồng một đôi. Cửa hàng dự định giảm giá bán, ước tính nếu cứ giảm giá bán mỗi đôi 1 nghìn đồng thì số giày mỗi tuần bán tăng thêm được 1 đôi. Xác định giá bán để mỗi tuần cửa hàng giày thể thao thu được lợi nhuận cao nhất, biết rằng giá nhập về ban đầu cho mỗi đôi giày thể thao là 300 nghìn đồng.

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn học sinh giỏi Toán 9 năm 2016 - 2017 sở GDĐT Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi Toán 9 THCS cấp tỉnh năm học 2016 – 2017 sở GD&ĐT tỉnh Ninh Bình; kỳ thi được diễn ra vào ngày 21 tháng 02 năm 2017; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi chọn học sinh giỏi Toán 9 năm 2016 – 2017 sở GD&ĐT Ninh Bình : + Cho phương trình: 2 2 x 2 m 1 x m 2m 1 0 (x là ẩn; m là tham số khác 0). Tìm m để phương trình có hai nghiệm phân biệt 1 2 x ;x thỏa mãn: 2 2 1 2 12 2 1 10 0 x x x x 9m. + Cho đường tròn tâm O, bán kính R có đường kính AB cố định. C là một điểm thay đổi trên đường tròn (C khác A và B). Gọi H là hình chiếu của C trên AB, I là trung điểm của AC. Đường thẳng OI cắt tiếp tuyến tại A của đường tròn (O; R) tại M, đường thẳng MB cắt đường thẳng CH tại K. a) Chứng minh 4 điểm C, H, O, I cùng thuộc một đường tròn b) Chứng minh MC là tiếp tuyến của đường tròn (O;R) c) Chứng minh IK song song với AB d) Xác định vị trí của điểm C để chu vi tam giác ABC đạt giá trị lớn nhất? Tìm giá trị lớn nhất đó. + Cho a, b, c là các số thực không âm thỏa mãn abc3. Tìm giá trị nhỏ nhất của biểu thức 3 33 Qa b c.
Đề thi HSG Toán 9 năm 2015 - 2016 phòng GDĐT thị xã Giá Rai - Bạc Liêu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi HSG Toán 9 năm 2015 – 2016 phòng GD&ĐT thị xã Giá Rai – Bạc Liêu; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.
Đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2015 - 2016 sở GDĐT Lai Châu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2015 – 2016 sở GD&ĐT Lai Châu; kỳ thi được diễn ra vào ngày 03 tháng 04 năm 2016.
Đề thi chọn học sinh giỏi Toán 9 năm 2015 - 2016 sở GDĐT Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi Toán 9 THCS cấp tỉnh năm học 2015 – 2016 sở GD&ĐT tỉnh Ninh Bình; kỳ thi được diễn ra vào ngày 02 tháng 03 năm 2016; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi chọn học sinh giỏi Toán 9 năm 2015 – 2016 sở GD&ĐT Ninh Bình : + Cho phương trình: 2 2 x m xm 2 (m là tham số, x là ẩn). 1. Chứng minh với mọi giá trị của m phương trình luôn có hai nghiệm phân biệt 1 2 x x 2. Tìm tất cả các giá trị của tham số m sao cho: 1 2 1 2 2 1 1 2 2 1 2 1 55 x x. + Cho các số thực không âm x, y, z đôi một khác nhau đồng thời thoả mãn zxzy 1. Chứng minh rằng: 222 111 4 xy zx zy. + Từ điểm M nằm ngoài đường tròn (O) vẽ các tiếp tuyến MA, MB và cát tuyến MNP với đường tròn (A, B là các tiếp điểm, N nằm giữa M và P). Gọi H là giao điểm của AB và MO. 1. Chứng minh: Tứ giác NHOP nội tiếp được đường tròn. 2. Kẻ dây cung PQ vuông góc với đường thẳng MO. Chứng minh ba điểm N, H, Q thẳng hàng. 3. Gọi E là giao điểm của MO và cung nhỏ AB của đường tròn (O). Chứng minh: NE là tia phân giác của MNH.