Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh THPT năm 2019 2020 môn Toán sở GD ĐT Hà Tĩnh

Nội dung Đề tuyển sinh THPT năm 2019 2020 môn Toán sở GD ĐT Hà Tĩnh Bản PDF - Nội dung bài viết Đề thi tuyển sinh vào lớp 10 THPT năm 2019-2020 môn Toán sở GD&ĐT Hà Tĩnh Đề thi tuyển sinh vào lớp 10 THPT năm 2019-2020 môn Toán sở GD&ĐT Hà Tĩnh Kỳ thi tuyển sinh vào lớp 10 THPT do sở Giáo dục và Đào tạo tỉnh Hà Tĩnh tổ chức đóng vai trò quan trọng trong hành trình học tập của học sinh tại địa phương. Đây là cơ hội để học sinh chứng minh năng lực và tiềm năng để tiếp tục hành trình học tập vào Trung học Phổ thông. Một trong những môn thi không thể thiếu trong kỳ thi này chính là môn Toán. Để giúp quý thầy cô, phụ huynh và các em học sinh chuẩn bị tốt nhất cho kỳ thi, chúng tôi xin giới thiệu nội dung đề thi và lời giải chi tiết đề thi tuyển sinh vào lớp 10 hệ THPT năm học 2019-2020 môn Toán sở GD&ĐT Hà Tĩnh, diễn ra vào ngày .../06/2019. Đề tuyển sinh gồm các câu hỏi như sau: 1. Một đội xe vận tải được phân công chở 112 tấn hàng. Tính số xe ban đầu của đội xe biết rằng mỗi xe chở khối lượng hàng như nhau. 2. Cho đường tròn tâm O và điểm M nằm ngoài đường tròn. Chứng minh các bài toán liên quan đến tứ giác nội tiếp và tính chất của đường tròn ngoại tiếp tam giác. 3. Tìm các giá trị a và b để đường thẳng đi qua hai điểm M(1;5) và N(2;8). Hãy ôn tập kỹ lưỡng và tự tin bước vào kỳ thi quan trọng này. Chúc các em đạt kết quả cao và thành công trên con đường học tập!

Nguồn: sytu.vn

Đọc Sách

Đề thi thử tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán trường THCS Nga Thiện - Thanh Hóa
Đề thi thử tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán trường THCS Nga Thiện – Thanh Hóa gồm 5 bài toán tự luận, có lời giải chi tiết.
Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Hà Nam
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Hà Nam gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho đường tròn (O). Từ một điểm M nằm ngoài đường tròn (O), kẻ hai tiếp tuyến MA và MB của đường tròn (A, B là các tiếp điểm). Kẻ đường kính BE của đường tròn (O). Gọi F là giao điểm thứ hai của đường thẳng ME và đường tròn (O). Đường thẳng AF cắt MO tại điểm N. Gọi H là giao điểm của MO và AB [ads] 1) Chứng minh tứ giác MAOB nội tiếp đường tròn 2) Chứng minh đường thẳng AE song song với đường thẳng MO 3) Chứng minh: MN2 = NF.NA 4) Chứng minh: MN = NH
Đề thi thử tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán trường THCS Thiệu Vận - Thanh Hóa lần 1
Đề thi thử tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán trường THCS Thiệu Vận – Thanh Hóa lần 1 gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = 2(m – 2)x + m – 3 và parabol (P): y = mx^2 (m khác 0) a. Tìm m để đường thẳng d đi qua điểm A (-1;3) b. Tìm m để (d) cắt (P) tại hai điểm phân biệt có hoành độ x1, x2 trái dấu (với (d) là ở đề bài cho) [ads] + Cho đường tròn tâm (0), đường kính AB = 2R. Trên đường thẳng AB lấy điểm H sao cho B nằm giữa A và H (H không trùng với B), qua H dựng đường thẳng d vuông góc với AB. Lấy C cố định thuộc đoạn thẳng OB (C không trùng với O và B). Qua điểm C kẻ đường thẳng a bất kì cắt đường tròn (0) tại hai điểm E và F (a không trùng với AB). Các tia AE và AF cắt đường thẳng d lần lượt tại M, N a) Chứng minh tứ giác BEMH nội tiếp đường tròn b) Chứng minh 2 tam giác AFB và AHN đồng dạng, và đường tròn ngoại tiếp tam giác AMN luôn đi qua một điểm cố định khác A khi đường thẳng a thay đổi c) Cho AB = 4cm; BC = 1cm; HB = 1 cm. Tìm giá trị nhỏ nhất của diện tích tam giác AMN
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Bình Định
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 – 2018 môn Toán sở GD và ĐT Bình Định gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho đường tròn (T) tâm O đường kính AB, trên tiếp tuyến tại A lấy một điểm P khác A, điểm K thuộc đoạn OB (K khác O và B). Đường thẳng PK cắt đường tròn (T) tại C và D (C nằm giữa P và D), H là trung điểm của CD [ads] a) Chứng minh tứ giác AOHP nội tiếp được đường tròn b) Kẻ DI song song PO, điểm I thuộc AB, chứng minh góc PDI = góc BAH c) Chứng minh đẳng thức: PA^2 = PC.PD d) BC cắt OP tại J, chứng minh AJ//DB