Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tổng hợp lý thuyết nguyên hàm, tích phân và ứng dụng - Lê Minh Tâm

Tài liệu gồm 153 trang, được biên soạn bởi thầy giáo Lê Minh Tâm, tổng hợp lý thuyết chung và hướng dẫn giải các dạng bài tập chuyên đề nguyên hàm, tích phân và ứng dụng, giúp học sinh lớp 12 tham khảo khi học chương trình môn Toán 12 phần Giải tích chương 3. Chủ đề 01 . NGUYÊN HÀM. + Dạng 1.1. Nguyên hàm cơ bản 5. + Dạng 1.2. Nguyên hàm đổi biến 7. 1.2.1. Đổi biến loại 1 (Lượng giác hóa) 7. 1.2.2. Đổi biến loại 2 9. + Dạng 1.3. Nguyên hàm từng phần 11. + Dạng 1.4. Nguyên hàm hàm số hữu tỉ 13. 1.4.1. Bậc tử ≥ Bậc mẫu 13. 1.4.1. Bậc tử < Bậc mẫu 14. + Dạng 1.5. Nguyên hàm hàm số vô tỉ 23. + Dạng 1.6. Nguyên hàm hàm số lượng giác 23. + Dạng 1.7. Nguyên hàm có điều kiện 26. Chủ đề 02 . TÍCH PHÂN. + Dạng 2.1. Tích phân áp dụng tính chất & bảng nguyên hàm cơ bản 29. + Dạng 2.2. Tích phân từng phần 31. + Dạng 2.3. Tích phân đổi biến loại 1 33. + Dạng 2.4. Tích phân đổi biến loại 2 35. + Dạng 2.5. Tích phân kết hợp đổi biến & từng phần 37. + Dạng 2.6. Tích phân chứa trị tuyệt đối 39. + Dạng 2.7. Tích phân dựa vào đồ thị 41. + Dạng 2.8. Tích phân hàm chẵn lẻ 43. + Dạng 2.9. Tích phân hàm cho nhiều công thức 45. + Dạng 2.10. Tích phân liên quan max – min 47. + Dạng 2.11. Tích phân hàm “ẩn” 49. 2.11.1. Dùng phương pháp đổi biến 49. 2.11.2. Dùng phương pháp từng phần 51. + Dạng 2.12. Tích phân liên quan phương trình vi phân 53. 2.12.1. Biểu thức đạo hàm 53. 2.12.2. Biểu thức tổng hiệu 55. 2.12.2. Bài toán tổng quát 𝒇′(𝒙) + 𝒑(𝒙).𝒇(𝒙) = 𝒉(𝒙) 56. + Dạng 2.13. Bất đẳng thức tích phân 58. Chủ đề 03 . ỨNG DỤNG TÍCH PHÂN. + Dạng 3.1. Câu hỏi lý thuyết 63. + Dạng 3.2. Diện tích hình phẳng giới hạn bởi y = f(x), Ox, x = a, x = b 65. + Dạng 3.3. Diện tích hình phẳng giới hạn bởi y = f(x), y = g(x), x = a, x = b 66. + Dạng 3.4. Diện tích hình phẳng giới hạn bởi y = f(x), y = g(x), y = h(x) 67. + Dạng 3.5. Diện tích hình phẳng dựa vào đồ thị 68. + Dạng 3.6. Thể tích vật thể 70. + Dạng 3.7. Thể tích hình phẳng giới hạn bởi f(x), Ox, x = a, x = b quay quanh Ox 71. + Dạng 3.8. Thể tích hình phẳng giới hạn bởi f(x), g(x), x = a, x = b quay quanh Ox 72. + Dạng 3.9. Thể tích hình phẳng giới hạn bởi f(y), g(y), y = a, y = b quay quanh Oy 73. + Dạng 3.10. Tính giá trị hàm qua diện tích hình phẳng 74.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề nguyên hàm luyện thi THPT Quốc gia 2018 - Lê Bá Bảo
Bài viết chuyên đề nguyên hàm được biên soạn bởi thầy Lê Bá Bảo gồm 43 trang nằm trong kế hoạch ôn tập luyện thi THPT Quốc gia 2018 môn Toán. Nội dung tài liệu: Nguyên hàm và các phương pháp xác định nguyên hàm I – Tổng quan lý thuyết 1. Nguyên hàm Cho hàm số f(x) xác định trên K (K là khoảng, đoạn hay nửa khoảng). Hàm số F(x) được gọi là nguyên hàm của hàm số f(x) trên K nếu F'(x) = f(x) với mọi x ∈ K. Tính chất của nguyên hàm: + Nếu F(x) là một nguyên hàm của hàm số f(x) trên K thì với mỗi hằng số C, hàm số G(x) = F(x) + C cũng là một nguyên hàm của f(x) trên K. + Nếu F(x) là một nguyên hàm của hàm số f(x) trên K thì mọi nguyên hàm của f(x) trên K đều có dạng F(x) + C, với C là một hằng số. 2. Tính chất của nguyên hàm 3. Sự tồn tại của nguyên hàm: Mọi hàm số f(x) liên tục trên K đều có nguyên hàm trên K. 4. Bảng nguyên hàm của một số hàm số sơ cấp [ads] II – Phương pháp tính nguyên hàm 1. Phương pháp đổi biến số: Nếu ∫f(u)du = F(u) + C và u = u(x) là hàm số có đạo hàm liên tục thì: ∫f(u(x))u'(x)dx = F(u(x)) + C 2. Phương pháp nguyên hàm từng phần: Nếu hai hàm số u = u(x) và v = v(x) có đạo hàm liên tục trên K thì: ∫u(x)v'(x)dx = u(x)v(x) – ∫u'(x)v(x)dx III – Bài tập tự luận minh họa 1. Nhóm kỹ năng 1. Một số phép biến đổi cơ bản 2. Nhóm kỹ năng 2. Nguyên hàm các hàm số phân thức 3. Nhóm kỹ năng 3. Nguyên hàm từng phần + Dạng 1. I = ∫f(x)sinxdx hoặc I = ∫f(x)cosxdx, trong đó f(x) là đa thức. Phương pháp: Đặt u = f(x) và dv = sinxdx (hoặc cosxdx). + Dạng 2. I = ∫f(x)e^xdx, trong đó f(x) là đa thức. Phương pháp: Đặt u = f(x) và dv = e^x.dx. + Dạng 3. I = ∫f(x)logxdx, trong đó f(x) là đa thức. Phương pháp: Đặt u = logx và dv = f(x)dx 4. Nhóm kỹ năng 4. Đổi biến 5. Nhóm kỹ năng 5. Dùng vi phân IV – Bài tập trắc nghiệm minh họa: Tuyển chọn các bài toán trắc nghiệm nguyên hàm có đáp án và lời giải chi tiết. V – Bài tập trắc nghiệm tự luyện
Hướng dẫn giải một số bài toán nâng cao về ứng dụng của tích phân - Vũ Hồng Quý
Tài liệu gồm 10 trang tuyển tập 8 bài toán ứng dụng của tích phân ở mức độ vận dụng bậc cao kèm theo hướng dẫn giải.
Kỹ thuật CHỌN trong trắc nghiệm tích phân và số phức - Trần Lê Quyền
Một nguyên tắc cơ bản khi xây dựng nên các bài toán đại số chính là: Thiết lập sự cân bằng giữa số ẩn số và số phương trình lập nên từ các dữ kiện. Lấy ý tưởng đó, bài viết này tổng hợp và giới thiệu vài cách xử lí nhanh một số bài toán số phức và tích phân bằng một kiểu chọn đặc biệt. Tôi cố tình không phân chia ra các đề mục để tách biệt giữa số phức và tích phân vì xét dưới góc nhìn này, chúng hoàn toàn giống nhau! [ads]
Bộ câu hỏi tích phân chống Casio có lời giải chi tiết - Đặng Việt Hùng
Tài liệu gồm 12 trang với 35 bài toán tích phân chống Casio có lời giải chi tiết. Tài liệu do thầy Đặng Việt Hùng biên soạn và chia sẻ.