Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HK2 Toán 10 năm 2018 - 2019 trường chuyên Hạ Long - Quảng Ninh

Nhằm kiểm tra đánh giá chất lượng học tập môn Toán của học sinh khối lớp 10 trong giai đoạn học kỳ 2 năm học 2018 – 2019, vừa qua, trường THPT chuyên Hạ Long, tỉnh Quảng Ninh đã tổ chức kỳ thi học kỳ 2 Toán 10 năm học 2018 – 2019. Đề thi HK2 Toán 10 năm 2018 – 2019 trường chuyên Hạ Long – Quảng Ninh có mã đề 101, đề được biên soạn theo dạng trắc nghiệm khách quan với 50 câu hỏi và bài toán, học sinh làm bài thi học kỳ trong vòng 90 phút. Trích dẫn đề thi HK2 Toán 10 năm 2018 – 2019 trường chuyên Hạ Long – Quảng Ninh : + Một gia đình cần ít nhất 900 đơn vị protein và 400 đơn vị lipit trong thức ăn mỗi ngày. Mỗi kg thịt lợn chứa 800 đơn vị protein và 200 đơn vị lipit. Mỗi kg cá chứa 600 đơn vị protetin và 400 đơn vị lipit. Biết rằng gia đình này chỉ mua tối đa 1,6 kg thịt lợn và 1,1kg thịt cá. Giá tiền 1kg thịt lợn là 45 nghìn đồng, 1kg thịt cá là 35 nghìn đồng. Hỏi gia đình đó phải mua bao nhiêu kg mỗi loại để số tiền bỏ ra là ít nhất. A. 0,6 kg thịt lợn và 0,7 kg cá. B. 0,3kg thịt lợn và 1,1kg cá. C. 0,6 kg cá và 0,7 kg thịt lợn. D. 1,6 kg thịt lợn và 1,1kg cá. [ads] + Muốn đo chiều cao của tháp chàm Por Klong Garai ở Ninh Thuận người ta lấy hai điểm A và B trên mặt đất có khoảng cách AB = 12 m cùng thẳng hàng với chân C của tháp để đặt hai giác kế. Chân của giác kế có chiều cao h = 1,2 m. Gọi D là đỉnh tháp và hai điểm A1, B1 cùng thẳng hàng với C1 thuộc chiều cao CD của tháp. Người ta đo được góc DA1C1 = 49 độ và DB1C1 = 35 độ. Chiều cao CD của tháp gần với kết quả nào nhất. + Lục giác đều ABCDEF nội tiếp đường tròn lượng giác có gốc là A, các đỉnh lấy theo thứ tự đó và các điểm B, C có tung độ dương. Khi đó góc lượng giác có tia đầu OA, tia cuối OC bằng?

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 2 Toán 10 năm 2019 - 2020 trường THPT Thủ Khoa Huân - TP HCM
Nhằm giúp các em học sinh lớp 10 ôn tập, chuẩn bị cho đợt kiểm tra cuối học kỳ 2 môn Toán lớp 10 sắp tới, giới thiệu đến các em đề thi học kì 2 Toán 10 năm học 2019 – 2020 trường THPT Thủ Khoa Huân, thành phố Hồ Chí Minh, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học kì 2 Toán 10 năm 2019 – 2020 trường THPT Thủ Khoa Huân – TP HCM : + Trong mặt phẳng với hệ trục tọa độ Oxy, cho điểm A(−1; 3), B(5; −5) và đường thẳng d : 2x + 3y − 1 = 0. a. Viết phương trình tham số và phương trình tổng quát của đường thẳng AB. b. Viết phương trình đường tròn tâm A và tiếp xúc với đường thẳng d. c. Viết phương trình đường tròn (C) đi qua các điểm A, B và có tâm thuộc đường thẳng d. + Trên đường tròn lượng giác, điểm M thỏa mãn (Ox;OM) = 700◦ thì nằm ở góc phần tư thứ? + Gọi ∆ là đường thẳng đi qua điểm M(−1; 3) và nhận −→u = (3; 1) làm vectơ chỉ phương. Trong các phương trình sau, phương trình tham số của đường thẳng ∆ là?
Đề thi HK2 Toán 10 năm học 2019 - 2020 trường THPT Ngô Gia Tự - Đắk Lắk
Ngày … tháng 06 năm 2020, trường THPT Ngô Gia Tự, huyện Ea Kar, tỉnh Đắk Lắk tổ chức kỳ thi kiểm tra khảo sát chất lượng học kỳ 2 môn Toán lớp 10 năm học 2019 – 2020. Đề thi HK2 Toán 10 năm học 2019 – 2020 trường THPT Ngô Gia Tự – Đắk Lắk mã đề 182 gồm có 03 trang với 20 câu trắc nghiệm (chiếm 04 điểm) và 06 câu tự luận (chiếm 06 điểm), thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án và lời giải chi tiết mã đề 182, 183, 215, 216. Trích dẫn đề thi HK2 Toán 10 năm học 2019 – 2020 trường THPT Ngô Gia Tự – Đắk Lắk : + Trong các phương trình sau, có một phương trình là phương trình chính tắc của một elip. Hãy cho biết đó là phương trình nào? + Trong mặt phẳng toạ độ Oxy, cho hai điểm A(-2;6), B(1;2) và đường tròn (T) có phương trình (x – 3)^2 + (y + 1)^2 = 5. a) Viết phương trình đường tròn (C) có tâm A và đi qua B. b) Gọi d là tiếp tuyến của đường tròn (T) tại điểm M (4;-3) thuộc (T). Viết phương trình tổng quát của d. + Trong mặt phẳng toạ độ Oxy, cho đường tròn (C) có phương trình (x – 1)^2 + y^2 = 2 và đường thẳng ∆: x – y + m = 0. Tìm m để trên ∆ có duy nhất một điểm M mà từ đó có thể kẻ được hai tiếp tuyến MA, MB tới (C) (với A, B là các tiếp điểm) sao cho tam giác MAB đều.
Đề thi HK2 Toán 10 năm học 2019 - 2020 trường THPT Gia Định - TP HCM
Ngày … tháng 06 năm 2020, trường THPT Gia Định, quận Bình Thạnh, thành phố Hồ Chí Minh tổ chức kỳ thi kiểm tra chất lượng học kỳ 2 môn Toán 10 năm học 2019 – 2020. Đề thi HK2 Toán 10 năm học 2019 – 2020 trường THPT Gia Định – TP HCM có dạng tự luận, đề gồm 01 trang với 04 bài toán, thời gian làm bài 60 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi HK2 Toán 10 năm học 2019 – 2020 trường THPT Gia Định – TP HCM : + Trong mặt phẳng với hệ trục toạ độ Oxy, cho đường tròn (C): x^2 + y^2 – 4x + 6y + 3 = 0. a) Tìm tọa độ tâm và tính bán kính của đường tròn (C). b) Viết phương trình tiếp tuyến (d) với đường tròn (C), biết tiếp tuyến (d) song song với đường thẳng delta: 3x – y + 1 = 0. Tìm tọa độ tiếp điểm. [ads] + Trong mặt phẳng với hệ trục toạ độ Oxy, cho (E): 16x^2 + 25y^2 = 400. Tìm tọa độ các tiêu điểm F1 và F2; đỉnh, tính tiêu cự; độ dài các trục của (E). + Cho cosa = 4/5 với 0 độ < a < 90 độ và cosb = -12/13. Tính các giá trị: sina; tana; cot a và tính giá trị biểu thức: A = cos(a + b).cos(a – b).
Đề thi học kì 2 Toán 10 năm 2019 - 2020 trường THPT Marie Curie - TP HCM
Ngày … tháng 06 năm 2020, trường THPT Marie Curie, quận 3, thành phố Hồ Chí Minh tổ chức kỳ thi kiểm tra học kì 2 môn Toán lớp 10 năm học 2019 – 2020. Đề thi học kì 2 Toán 10 năm 2019 – 2020 trường THPT Marie Curie – TP HCM có dạng đề tự luận, đề gồm 01 trang với 04 bài toán, thời gian làm bài thi là 90 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán 10 năm 2019 – 2020 trường THPT Marie Curie – TP HCM : + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC với A(2;-1), B(-1;2) và C(5;5). a) Viết phương trình tổng quát của đường thẳng d qua A và vuông góc BC. b) Viết phương trình đường tròn (C) có tâm là trọng tâm của tam giác ABC và (C) qua gốc tọa độ. c) Tìm điểm K trên đường thẳng d1: 2x – y + 1 = 0 cách trục hoành một đoạn bằng 5, biết rằng điểm K có tung độ dương. [ads] + Cho phương trình x^2 + (m + 2)x – m – 3 = 0 (1). Tìm tất cả các giá trị của tham số m để phương trình (1) có hai nghiệm phân biệt x1 và x2 sao cho x1^2 + x2^2 < 3 – 2x1x2.